AR模型功率谱估计算法对比与MATLAB实现

4星 · 超过85%的资源 需积分: 42 73 下载量 57 浏览量 更新于2024-09-16 2 收藏 649KB PDF 举报
"AR模型功率谱估计的比较与MATLAB实现" 本文主要探讨了自回归(Auto-Regressive, AR)模型在功率谱估计中的应用,以及不同算法的性能比较和MATLAB实现。AR模型是一种参数模型,常用于描述随机过程,它的基本思想是通过当前输出值与过去输入值的线性组合来表达。在功率谱估计中,AR模型能够提供比传统方法(如周期图和自相关法)更高的分辨率和更好的方差性能。 1. AR模型的Yule-Walker方程 AR模型的定义是当前输出X(n)是过去输入u(n)的加权和,加上一个白噪声序列u(n),模型阶数为p。通过Z变换,可以得到AR模型的传递函数H(z)和功率谱Px(e^jwt)的表达式。为了进行功率谱估计,关键在于求解AR模型的参数ak和方差σ2,这通常通过Yule-Walker方程实现。 2. AR模型参数求解的典型算法 常见的求解算法包括: - 高斯消元法:这是一种线性方程组的直接解法,适用于小规模问题,但在大阶数时计算复杂度较高,可能不稳定。 - Levinson递推算法:该算法是一种迭代方法,具有较低的计算复杂度,并且在某些情况下比高斯消元更稳定。 - Durbin算法:类似于Levinson算法,但更侧重于减小残差平方和,适合于存在较大误差的情况。 - Kalman滤波:在存在噪声和不确定性的情况下,Kalman滤波器能提供最优估计,但计算量较大。 3. MATLAB实现 MATLAB作为一种强大的数值计算工具,提供了方便的函数库用于实现这些算法,如`ar`函数可以用于估计AR模型参数,而`pwelch`函数可用于功率谱估计。通过MATLAB进行仿真,可以直观地对比不同算法的性能,包括计算速度、估计精度和稳定性等方面。 4. 性能指标与选择 在实际应用中,选择合适的AR模型算法要考虑多个因素:计算效率、稳定性、估计精度以及对噪声的鲁棒性。通过仿真实验,可以评估不同算法在不同条件下的表现,帮助用户根据具体需求做出决策。 5. 结论 AR模型功率谱估计在现代信号处理中具有重要地位,不同算法各有优劣。通过对这些算法的比较和MATLAB实现,可以深入理解它们的工作原理和实际效果,为实际工程问题提供有效的解决方案。
2019-08-12 上传
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar (最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正) (声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计) (按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE', 'AIC', 'MDL', 'CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。) ………………………………以上省略…………………………………………………………………… 假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下: Y = x; Y(1:n) = []; m = N-n; X = [];% 构造系数矩阵 for i = 1:m     for j = 1:n         X(i,j) = xt(n i-j);     end end beta = inv(X'*X)*X'*Y'; 复制代码 beta即为用最小二乘法估计出的模型参数。 此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。 4.3.3 AR模型阶次的选择及实验设计 文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(Singular Value Decomposition, SVD)定阶法、最小预测定误差阶准则(Final Prediction Error Criterion, FPE)、AIC定阶准则(Akaika’s Information theoretic Criterion, AIC)、MDL定阶准则以及CAT定阶准则。文献[28]中还介绍了一种BIC定阶准则。SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。 以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分): for m = 1:N-1    ……       % 判断是否达到所选定阶准则的要求    if strcmp(criterion,'FPE')        objectfun(m 1) = (N (m 1))/(N-(m 1))*E(m 1);    elseif strcmp(criterion,'AIC')        objectfun(m 1) = N*log(E(m 1)) 2*(m 1);    elseif strcmp(criterion,'MDL')        objectfun(m 1) = N*log(E(m 1)) (m 1)*log(N);    elseif strcmp(criterion,'CAT')        for index = 1:m 1            temp = temp (N-index)/(N*E(index));        end        objectfun(m 1) = 1/N*temp-(N-(m 1))/(N*E(m 1));    end        if objectfun(m 1) >= objectfun(m)        orderpredict = m;        break;    end end 复制代码 orderpredict变量即为使用相应准则预测的AR模型阶次。 (注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion) 登录/注册后可看大图 程序1.JPG (35.14 KB, 下载次数: 20352) 下载附件  保存到相册 2009-8-28 20:54 上传 登录/注册后可看大图 程序2.JPG (51.78 KB, 下载次数: 15377) 下载附件  保存到相册 2009-8-28 20:54 上传