MIT 18.433:二分图匹配理论与组合优化
需积分: 5 95 浏览量
更新于2024-06-16
收藏 2.22MB PDF 举报
"MIT 18.433 组合优化讲义.pdf"
这篇讲义主要探讨了组合优化中的一个重要领域——二分图匹配。二分图是一种特殊的图,其顶点可以被划分为两个互不相交的集合A和B,其中任意一条边连接的两个顶点分别属于这两个集合。在二分图中,匹配是指边的集合,其中每条边连接一对不同的顶点,而不会有任何顶点被两条边同时连接。匹配可以是不完美的,即存在未匹配的顶点,也可以是完美的,当所有顶点都被匹配时。
讲义首先介绍了几个基本概念,如图的定义(由顶点和边组成)、二分图、匹配以及未匹配顶点。接着,它提出了两个关键问题:1) 最大基数匹配问题,目标是寻找二分图中最大的匹配;2) 最小权重完美匹配问题,这涉及到给定每条边的权重,找到总权重最小的完美匹配。后者也称为分配问题。
对于最大基数匹配问题,讲义提到可以通过证明匹配大小的上界来确定最优解,这涉及到图论中的对偶概念。顶点覆盖是另一个相关概念,它是一个包含所有边至少一个端点的顶点集合。讲义指出最大匹配的大小总是小于等于最小顶点覆盖的大小,这是弱对偶性的体现。König定理(1931年)进一步指出,在二分图中,最大匹配的大小实际上等于最小顶点覆盖的大小,显示了强对偶性。
接下来,讲义会描述算法来解决这些问题,特别是匈牙利算法,它是一种高效的方法,用于找到二分图的最大匹配。此外,可能还会涉及增广路径的概念,它是证明和构造最大匹配的关键工具。增广路径是匹配中的一种特殊路径,通过调整它可以增加匹配的大小,直到达到最大匹配。
在最小权重完美匹配问题中,可能会引入Edmonds算法,该算法结合了增广路径的思想和权重的概念,能够在有向二分图中找到最小权重的完美匹配。此算法对于理解和求解分配问题至关重要。
这篇讲义深入讲解了二分图匹配理论及其在组合优化中的应用,不仅涵盖基础理论,还涉及实际求解这些问题的算法。这些内容对于理解图论、优化理论以及相关领域的研究者和学生来说都是非常宝贵的资源。
2018-07-30 上传
2022-05-19 上传
2024-02-02 上传
2024-02-02 上传
2024-02-03 上传
2010-06-24 上传
绝不原创的飞龙
- 粉丝: 4w+
- 资源: 1083
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用