精通C#与.NET:Q&A形式的全面指南

需积分: 9 1 下载量 154 浏览量 更新于2024-07-15 收藏 4.16MB PDF 举报
"《绝对精彩的C#与.NET编程指南》是一本旨在深入讲解C#和.NET技术的电子书,由Damir Arh撰写,适用于.NET Core 6、7版本。本书以问答形式帮助读者扎实掌握C#语言的基础概念,并提升开发技能。书中还涵盖了当前.NET开发者生态系统的概览,详细介绍了最新的.NET和C#特性和功能。 作为一本实用教程,该书不仅教授理论知识,而且基于作者丰富的实践经验,使读者在阅读过程中能够结合实际场景应用所学。然而,作者明确指出,虽然他已尽最大努力确保内容的准确性,但对书中可能存在的错误、遗漏或不完整性不承担责任。读者应自行判断并根据自身情况调整使用信息,因为每个人的实际情况可能与书中的示例有所差异。 此外,该书特别适合那些准备面试或者希望在.NET领域深化理解的专业人士,通过阅读这本书,不仅可以巩固基础,还能了解最新的技术和趋势,从而更好地为职业生涯做好准备。版权方面,所有内容未经 DotNetCurry.com 的书面许可不得以任何形式复制、分发或通过电子或机械手段(如复印、录音或网络检索)传播,包括存储和检索系统。《绝对精彩》是一本全面且极具价值的C#和.NET学习资料。"

For macroscopically anisotropic media in which the variations in the phase stiffness tensor are small, formal solutions to the boundary-value problem have been developed in the form of perturbation series (Dederichs and Zeller, 1973; Gubernatis and Krumhansl, 1975 ; Willis, 1981). Due to the nature of the integral operator, one must contend with conditionally convergent integrals. One approach to this problem is to carry out a “renormalization” procedure which amounts to identifying physically what the conditionally convergent terms ought to contribute and replacing them by convergent terms that make this contribution (McCoy, 1979). For the special case of macroscopically isotropic media, the first few terms of this perturbation expansion have been explicitly given in terms of certain statistical correlation functions for both three-dimensional media (Beran and Molyneux, 1966 ; Milton and Phan-Thien, 1982) and two-dimensional media (Silnutzer, 1972 ; Milton, 1982). A drawback of all of these classical perturbation expansions is that they are only valid for media in which the moduli of the phases are nearly the same, albeit applicable for arbitrary volume fractions. In this paper we develop new, exact perturbation expansions for the effective stiffness tensor of macroscopically anisotropic composite media consisting of two isotropic phases by introducing an integral equation for the so-called “cavity” strain field. The expansions are not formal but rather the nth-order tensor coefficients are given explicitly in terms of integrals over products of certain tensor fields and a determinant involving n-point statistical correlation functions that render the integrals absolutely convergent in the infinite-volume limit. Thus, no renormalization analysis is required because the procedure used to solve the integral equation systematically leads to absolutely convergent integrals. Another useful feature of the expansions is that they converge rapidly for a class of dispersions for all volume fractions, even when the phase moduli differ significantly.

2023-06-02 上传