掌握计算几何基础:向量、正交分解与数量积详解
需积分: 9 122 浏览量
更新于2024-07-15
收藏 2.39MB PDF 举报
计算几何是数学的一个分支,主要研究在计算机图形学和计算机辅助设计等领域中,利用数学工具处理几何形状和空间关系的问题。以下是一份关于计算几何基础知识的提纲:
1. **向量基础**
- 向量是具有大小和方向的量,通常用有序对(a, b)或(x, y)表示,代表从原点到点(a, b)的有向线段。
- 零向量与所有向量平行,没有特定的方向。
- 通过两点(A(x1, y1), B(x2, y2))可以确定一个向量,向量AB的坐标为(a = x2 - x1, b = y2 - y1)。
- 向量可以进行正交分解,将其分解为互相垂直的分量,如a = x + y,其中x沿一个方向,y沿另一个垂直方向。
- 向量的加减和数乘遵循运算法则,如a + b = (m+p, n+q),λa = (λm, λn),满足交换律和结合律。
- 向量数量积(点积或内积)是两个向量的模长乘积与它们之间角度余弦的乘积,a·b = |a||b|cosθ,具有交换律和分配律。
2. **向量数量积的应用**
- 向量垂直:当a·b = 0时,表示a与b互相垂直。
- 同向或共线:若a·b = |a||b|,则a与b共线。
- 夹角计算:通过数量积计算两个向量之间的角度。
3. **向量积(叉积或外积)**
- 向量积的结果是一个新的向量,其方向垂直于原来的两个向量,可通过右手螺旋法则确定。
- 向量积的模等于两个向量模长的乘积与它们之间角度的正弦值,几何上表示为对应平行四边形的面积。
理解并掌握这些计算几何的基础知识对于处理图形学中的变换、碰撞检测、体积计算等问题至关重要。在实际编程中,向量和向量积的运用广泛,如在三维空间中的旋转、平移和缩放操作,以及在计算机图形渲染中的光照计算。学习这些概念有助于提高编程效率和算法设计能力。
2011-06-19 上传
2021-11-19 上传
2021-10-16 上传
2021-10-12 上传
2021-08-19 上传
2009-05-02 上传
Azcii
- 粉丝: 91
- 资源: 1
最新资源
- Java集合ArrayList实现字符串管理及效果展示
- 实现2D3D相机拾取射线的关键技术
- LiveLy-公寓管理门户:创新体验与技术实现
- 易语言打造的快捷禁止程序运行小工具
- Microgateway核心:实现配置和插件的主端口转发
- 掌握Java基本操作:增删查改入门代码详解
- Apache Tomcat 7.0.109 Windows版下载指南
- Qt实现文件系统浏览器界面设计与功能开发
- ReactJS新手实验:搭建与运行教程
- 探索生成艺术:几个月创意Processing实验
- Django框架下Cisco IOx平台实战开发案例源码解析
- 在Linux环境下配置Java版VTK开发环境
- 29街网上城市公司网站系统v1.0:企业建站全面解决方案
- WordPress CMB2插件的Suggest字段类型使用教程
- TCP协议实现的Java桌面聊天客户端应用
- ANR-WatchDog: 检测Android应用无响应并报告异常