新冠疫情数据可视化:丁香园爬虫与图表展示

"这篇学习记录主要探讨了如何利用Python进行新冠疫情数据的爬取与可视化,包括从丁香园网站抓取数据,然后展示全国疫情地图、湖北疫情分布以及疫情增长趋势。通过requests模块发送HTTP请求,re模块进行数据解析,最后进行数据的保存和可视化处理。"
在这篇学习记录中,作者旨在掌握两项核心技能:从丁香园网站爬取疫情数据和对数据进行可视化。首先,爬取数据是整个过程的基础,这涉及到网络编程的知识。在Python中,requests模块是一个常用的库,用于发送HTTP请求。它能够模拟浏览器行为,向目标网站发送GET请求,获取服务器的响应数据。当发送请求时,可以使用requests.get()函数,指定要爬取的URL,如'https://ncov.dxy.cn/ncovh5/view/pneumonia'。响应的数据通常以字节形式返回,需要使用decode()方法将其转化为字符串。
在获取到网页源码后,数据通常被嵌入在HTML或JavaScript中。为了提取有用的信息,需要解析这些文本。这里使用了Python的re模块,它提供了正则表达式功能,可以匹配和提取特定模式的字符串。在示例中,使用re.search()函数找到包含疫情数据的部分,并将其提取出来。
提取数据后,通常会将数据保存到本地,以便后续分析和可视化。可以使用json模块将数据结构化并保存为JSON文件,便于读取和处理。在本案例中,作者可能使用了datetime模块获取当前日期,并将数据按日期命名存储。
接下来是数据的可视化部分,主要包括三个方面:
1. **全国疫情地图**:可能使用地图可视化库,如folium或geopandas,结合中国地理信息数据,展示各省份的疫情状况。
2. **湖北疫情分布图**:可能更具体地展示了湖北省内的疫情数据,可以使用条形图或热力图来表示各个城市的病例数。
3. **疫情增长趋势图**:可能使用折线图展示每日新增病例的变化,帮助观察疫情的发展趋势。
整个过程涉及到了网络爬虫、数据解析、数据存储以及数据可视化等多个环节,是Python在数据分析领域应用的一个综合实例。对于学习者来说,这是一次全面了解和实践数据获取与分析的好机会。
1726 浏览量
1792 浏览量
2023-12-24 上传
点击了解资源详情
117 浏览量
2023-03-13 上传
3047 浏览量
412 浏览量

weixin_38631329
- 粉丝: 2
最新资源
- 西北工业大学卢京潮《自动控制原理》答案解析
- 国际酒店预订HTML网站模板介绍
- 体验更快速清洁的PC:Advanced SystemCare 10 Beta版
- 汽车美容店管理系统:毕业设计与数据库整合
- Tesseract Docker教程:构建古希腊语OCR训练数据
- 探索Android全景图片实现与openGL技术
- 测试文件下载中的空字节与模式检查
- SearchBar-crx插件:Chrome浏览器下的高效搜索工具
- Win98与Win2000桌面透明效果教程
- iOS自定义TabBar实现上下联动导航
- 51单片机常用函数集及其驱动实现
- 中科大834软件工程历年考研真题解析(1995-2016)
- Bootstrap遮罩层实现方法详解
- 掌握PopupViewController:实现视图控制器的覆盖与弹出
- 酷Q机器人软件深度解析:群管理与自动聊天功能
- 提升效率的Qwik Search-crx插件:快速切换搜索引擎