Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现

需积分: 11 0 下载量 42 浏览量 更新于2024-11-10 收藏 2KB ZIP 举报
资源摘要信息: "该文档提供了一段关于在MATLAB环境下进行主成分分析(PCA)的代码,该代码针对的是著名的Fisher的Iris数据集(Iris Setosa部分),生成的输出包括帕累托图、载荷图和双图。Iris数据集是一个常用的教学和测试数据集,包含了150个样本的4个特征,这些样本分别属于3种不同的Iris花(Setosa、Versicolour和Virginica)。在这个特定的案例中,代码专注于Setosa这一种类的50个样本。" 知识点详细说明: 1. 主成分分析(PCA):PCA是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些新变量称为主成分。PCA在降维、数据压缩和数据解释方面非常有用。它能够将多维数据投影到少数几个主成分上,以揭示数据中的主要变异模式。 2. Iris数据集:Iris数据集由R.A.Fisher在1936年首次提出,包含150个样本,每个样本有4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。每个样本都标记有其对应的种类。Iris数据集被广泛用于模式识别和机器学习的分类问题。 3. MATLAB:MATLAB是一个高性能的数值计算和可视化软件,广泛用于工程、科学和数学领域。它提供了大量的内置函数,用于矩阵运算、函数和数据分析、算法开发、图形绘制和用户界面构建等。 4. 帕累托图:在PCA的上下文中,帕累托图可能是指对主成分的贡献度进行可视化,从而展示各个特征在各主成分上的权重大小,帮助解释主成分。 5. 载荷图:载荷图在PCA中显示了原始变量与主成分之间的关系,即每个主成分中各个原始变量的系数(载荷)。通过载荷图,我们可以了解每个主成分代表了哪些原始特征的信息。 6. 双图(Biplot):双图是一种用于展示PCA结果的图形,它同时显示了样本点和变量点。样本点在主成分空间中的位置表示样本的主成分得分,而变量点则表示原始变量在主成分空间中的载荷。 7. MATLAB中的标签使用:在MATLAB中,标签(Label)通常用于标记图形中的元素,比如坐标轴、图例、文本等。通过使用标签,可以使图形更加清晰和易于理解。 8. ObsLabels的使用:在MATLAB中,ObsLabels用于定义观察对象的标签。在绘制图形时,可以通过ObsLabels为每个样本点添加文本标签,以便于识别。 9. 导入Excel数据:MATLAB提供了工具和函数,用于将Excel文件中的数据导入到MATLAB环境。这对于分析存储在Excel表格中的数据非常有用。 10. 压缩包子文件:这里的"压缩包子文件"可能是一个误译或者打字错误,实际上应该是指一个包含代码的压缩文件包(Zip file)。文件名为PCA_IrisSetosa_sep28_1110pm.zip,表明这是一个包含了PCA分析Iris Setosa数据集的MATLAB代码压缩包,创建时间为2021年9月28日晚上11点10分。 代码可能包含的步骤和操作包括: - 加载数据:从Excel表格中读取数据。 - 数据预处理:为数据点编号,准备标签。 - PCA计算:执行PCA算法,得到特征向量和特征值。 - 结果可视化:使用MATLAB的绘图函数绘制帕累托图、载荷图和双图。 - 标签应用:在图形中用标签标记样本点。 - 代码改进:寻求方法将样本编号与双图中的符号同时显示。 这段代码为数据科学家和学生提供了一个很好的PCA应用实例,有助于深入理解PCA的实际应用以及如何在MATLAB中进行数据分析和可视化。