MATLAB实现遗传算法详解
需积分: 20 6 浏览量
更新于2024-09-09
收藏 31KB DOC 举报
"一个基于MATLAB实现的遗传算法程序,该程序简单易懂,方便修改和扩展,适合学习和开发用途。"
遗传算法是一种模拟生物进化过程的优化算法,它通过模仿自然选择、遗传、突变等生物学过程来解决复杂问题。在MATLAB中实现遗传算法,通常包括以下步骤:
1. **初始化种群**:
- `popsize`:定义了种群的大小,即有多少个个体。
- `lchrom`:定义了每个个体的染色体长度,代表问题的决策变量数量。
- `initpop` 函数用于生成初始种群,随机分配0和1,代表二进制编码的基因。
2. **适应度函数(Fitness Function)**:
- `objfun` 是适应度函数,计算每个个体的适应度值。这通常涉及到将个体的基因解码并应用到目标问题上,适应度值反映了个体对问题解决方案的好坏。
3. **选择操作(Selection)**:
- 在 `select` 函数中,通常采用轮盘赌选择法,根据个体的适应度值进行概率选择,保留优秀的个体。
4. **交叉操作(Crossover)**:
- `crossover` 实现了基因的重组,即父代个体的基因部分传递给子代。这里可能使用单点、多点或均匀交叉等方式。
5. **变异操作(Mutation)**:
- `mutation` 函数实现了基因的随机变化,保持种群的多样性,防止过早收敛。
6. **保护与淘汰(Protection and Elimination)**:
- `pp_po` 函数执行保护优秀个体(按 `pp` 概率保留最好的 `mp` 个个体)和淘汰较差个体(按 `po` 概率淘汰 `np` 个个体)的操作。
7. **迭代与终止条件**:
- `for gen=1:maxgen` 循环表示遗传算法的迭代过程,直到达到最大代数 `maxgen`。
- `best` 函数记录每代的最佳个体和其适应度值,`bestfit` 和 `bestgen` 分别输出最佳个体的适应度和所在代数。
- 进化曲线 `plot(gen,maxfit(1,gen))` 展示了算法的进化过程。
这个MATLAB程序提供了一个基础的遗传算法框架,用户可以根据自己的问题调整适应度函数、选择、交叉和变异策略,以及调整其他参数以优化算法性能。通过理解和修改这个程序,可以加深对遗传算法的理解,并应用于实际问题的求解。
121 浏览量
2018-08-13 上传
2022-07-14 上传
2022-07-14 上传
2021-09-10 上传
2022-07-14 上传
2023-10-14 上传
175 浏览量
范国豪
- 粉丝: 12
- 资源: 5
最新资源
- Aspose资源包:转PDF无水印学习工具
- Go语言控制台输入输出操作教程
- 红外遥控报警器原理及应用详解下载
- 控制卷筒纸侧面位置的先进装置技术解析
- 易语言加解密例程源码详解与实践
- SpringMVC客户管理系统:Hibernate与Bootstrap集成实践
- 深入理解JavaScript Set与WeakSet的使用
- 深入解析接收存储及发送装置的广播技术方法
- zyString模块1.0源码公开-易语言编程利器
- Android记分板UI设计:SimpleScoreboard的简洁与高效
- 量子网格列设置存储组件:开源解决方案
- 全面技术源码合集:CcVita Php Check v1.1
- 中军创易语言抢购软件:付款功能解析
- Python手动实现图像滤波教程
- MATLAB源代码实现基于DFT的量子传输分析
- 开源程序Hukoch.exe:简化食谱管理与导入功能