混合灰狼优化算法:解决高维难题的创新策略

0 下载量 141 浏览量 更新于2024-08-26 收藏 404KB PDF 举报
本文探讨了"求解高维优化问题的混合灰狼优化算法"这一主题,针对高维度优化问题的求解提出了创新的优化策略。作者团队,由来自贵州财经大学和长沙理工大学的学者组成,主要贡献者龙文、蔡绍洪、焦建军、张文专和唐明珠,他们共同设计了一种混合算法,结合了混沌理论和精英反向学习机制。 混沌序列在该算法中起着关键作用,作为初始化步骤,它能够生成具有随机性和多样性的初始种群,有助于实现全局搜索的广泛覆盖,从而提高算法的探索能力。精英反向学习策略则是为了增强算法的局部搜索能力,它通过对当前最优解(精英个体)进行反向学习,引导其他个体向更优解区域移动,这种策略有助于提高搜索效率并减少陷入局部最优的风险。 在搜索过程中,决策层个体接受混沌扰动,进一步打破固有模式,增加了算法的动态性和跳出局部最优的可能,从而确保了算法在复杂高维空间中的全局优化性能。通过与10个不同维度(100维、500维和1000维)的标准测试函数进行实验,混合灰狼优化算法在求解精度和收敛速度方面表现出了显著的优势,相较于传统算法,其性能提升明显。 研究的主要关注点在于高维优化问题,这是许多实际应用中常见的挑战,如机器学习中的参数调优、信号处理中的滤波器设计等。混合灰狼优化算法的成功应用证明了它在处理这类复杂问题时的有效性和高效性,对于提高优化问题求解的准确性和速度具有重要的理论和实际价值。 关键词包括灰狼优化算法、混沌映射、精英反向学习以及高维优化问题,这些词汇体现了论文的核心内容和研究方法。整体来看,这篇文章不仅提供了新的优化算法,还为高维优化问题的解决提供了一种有效且实用的工具,对于学术界和工业界来说都具有较高的参考价值。