图神经网络基础教程:GCN、SAGE与PyTorch实现

需积分: 50 30 下载量 22 浏览量 更新于2024-07-15 收藏 2.52MB PDF 举报
图神经网络(Graph Neural Networks, GNNs)是一种新兴的深度学习模型,它在处理具有结构化数据的领域,如社交网络、化学分子、推荐系统等表现出强大的潜力。这份28页的教程旨在介绍图神经网络的基本概念、主要模型以及实际应用。 首先,章节"图:符号"定义了图的基本元素,包括节点(Nodes)、边(Edges)以及整个图(Graph)。在图中,每个节点通常关联有特征向量,而图分类任务则是每个图对应一个标签。节点分类则是指给定每个节点的特征,预测其所属类别。 接下来,教程介绍了几个关键的图神经网络模型示例: 1. **图卷积网络 (Graph Convolutional Networks, GCNs)** - 由Kipf和Welling在2017年的ICLR会议上提出,是GNN的基石之一。GCN通过邻居信息的聚合和卷积操作来更新节点特征,有助于解决节点分类问题。它的核心思想是通过局部连接和权重共享,将节点的特征与邻居的特征相结合。 2. **SAGE (Semi-Supervised Classification with Graph Convolutional Layers)** - 提出于2017年NIPS,SAGE采用了一种随机邻居采样的策略,可以处理大规模图,并且简化了模型架构。 3. **GAT (Graph Attention Networks)** - 由Velickovic等人在2018年的ICLR会议上发布,引入了注意力机制到图神经网络中,使得模型能够自适应地关注不同的邻居节点,提高了模型的表达能力。 在应用方面,教程展示了图神经网络在计算机视觉中的应用,如2020年的CVPR会议论文“Feature Matching”,利用GNN进行图像特征匹配。此外,还提到了一个名为"APPAP"的实际项目,展示了GNN在实际场景中的实践应用。 图神经网络库的选择也是一大亮点,例如**DeepGraphLibrary (DGL)**,这是一个专门用于构建和操作图数据的库,提供了高效且易于使用的接口;另一个是**PyTorch Geometric**,它是基于PyTorch的图神经网络库,由Fey、Matthias和Jan Eric Lenssen在2019年的ICLR workshop上发表的论文中详细介绍。 最后,教程探讨了图神经网络面临的挑战,如**邻居爆炸(Neighbor Explosion)** 和**特征平滑(Feature Oversmoothing)**,这些现象可能导致模型性能下降或过度拟合。作者提醒读者在设计和训练GNN时需注意这些问题,以优化模型的性能。 这份教程提供了一个全面的入门指南,涵盖了图神经网络的基础理论、核心模型、应用实例以及相关工具,对于对这个领域感兴趣的读者来说,是理解和掌握图神经网络不可或缺的参考资料。
2127 浏览量
# GPF ## 一、GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1、图节点预表示:利用NE框架,直接获得全图每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子图:可做类化处理,建立一种通用图数据结构; 4、子图特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是图输入、图输出的网络;也可以是图输入,分类/聚类结果输出的网络; 6、训练和测试; ## 二、主要文件: 1、graph.py:读入图数据; 2、embeddings.py:预表示学习; 3、sample.py:采样; 4、subgraphs.py/s2vGraph.py:抽取子图; 5、batchgraph.py:子图特征融合; 6、classifier.py:网络配置; 7、parameters.py/until.py:参数配置/帮助文件; ## 三、使用 1、在parameters.py中配置相关参数(可默认); 2、在example/文件夹中运行相应的案例文件--包括链接预测、节点状态预测; 以链接预测为例: ### 1、导入配置参数 ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、参数转换 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、读取数据 ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、获取全图节点的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正负节点采样 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取节点对的封闭子图 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加载网络模型,并在classifier中配置相关参数 ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` ### 8、训练和测试 ``` train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1], test_loss[2])) ``` ### 9、运行结果 ``` average test of epoch 0: loss 0.62392 acc 0.71462 auc 0.72314 loss: 0.51711 acc: 0.80000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.09batch/s] average training of epoch 1: loss 0.54414 acc 0.76895 auc 0.77751 loss: 0.37699 acc: 0.79167: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.07batch/s] average test of epoch 1: loss 0.51981 acc 0.78538 auc 0.79709 loss: 0.43700 acc: 0.84000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.64batch/s] average training of epoch 2: loss 0.49896 acc 0.79184 auc 0.82246 loss: 0.63594 acc: 0.66667: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 2: loss 0.48979 acc 0.79481 auc 0.83416 loss: 0.57502 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.70batch/s] average training of epoch 3: loss 0.50005 acc 0.77447 auc 0.79622 loss: 0.38903 acc: 0.75000: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.03batch/s] average test of epoch 3: loss 0.41463 acc 0.81132 auc 0.86523 loss: 0.54336 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.57batch/s] average training of epoch 4: loss 0.44815 acc 0.81711 auc 0.84530 loss: 0.44784 acc: 0.70833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 4: loss 0.48319 acc 0.81368 auc 0.84454 loss: 0.36999 acc: 0.88000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.17batch/s] average training of epoch 5: loss 0.39647 acc 0.84184 auc 0.89236 loss: 0.15548 acc: 0.95833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 5: loss 0.30881 acc 0.89623 auc 0.95132 ```
2050 浏览量
《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上出版的,部分章节涉及了常见的优化算法(遗传算法、粒子群算法等)与神经网络的结合问题。 《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。 《MATLAB神经网络43个案例分析》共有43章目录如下: 第1章 BP神经网络的数据分类——语音特征信号分类 第2章 BP神经网络的非线性系统建模——非线性函数拟合 第3章 遗传算法优化BP神经网络——非线性函数拟合 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模 第6章 PID神经元网络解耦控制算法——多变量系统控制 第7章 RBF网络的回归--非线性函数回归的实现 第8章 GRNN网络的预测----基于广义回归神经网络的货运量预测 第9章 离散Hopfield神经网络的联想记忆——数字识别 第10章 离散Hopfield神经网络的分类——高校科研能力评价 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算 第12章 初始SVM分类与回归 第13章 LIBSVM参数实例详解 第14章 基于SVM的数据分类预测——意大利葡萄酒种类识别 第15章 SVM的参数优化——如何更好的提升分类器的性能 第16章 基于SVM的回归预测分析——上证指数开盘指数预测. 第17章 基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测 第18章 基于SVM的图像分割-真彩色图像分割 第19章 基于SVM的手写字体识别 第20章 LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用 第21章 自组织竞争网络在模式分类中的应用—患者癌症发病预测 第22章 SOM神经网络的数据分类--柴油机故障诊断 第23章 Elman神经网络的数据预测----电力负荷预测模型研究 第24章 概率神经网络的分类预测--基于PNN的变压器故障诊断 第25章 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选 第26章 LVQ神经网络的分类——乳腺肿瘤诊断 第27章 LVQ神经网络的预测——人脸朝向识别 第28章 决策树分类器的应用研究——乳腺癌诊断 第29章 极限学习机在回归拟合及分类问题中的应用研究——对比实验 第30章 基于随机森林思想的组合分类器设计——乳腺癌诊断 第31章 思维进化算法优化BP神经网络——非线性函数拟合 第32章 小波神经网络的时间序列预测——短时交通流量预测 第33章 模糊神经网络的预测算法——嘉陵江水质评价 第34章 广义神经网络的聚类算法——网络入侵聚类 第35章 粒子群优化算法的寻优算法——非线性函数极值寻优 第36章 遗传算法优化计算——建模自变量降维 第37章 基于灰色神经网络的预测算法研究——订单需求预测 第38章 基于Kohonen网络的聚类算法——网络入侵聚类 第39章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类 第40章 动态神经网络时间序列预测研究——基于MATLAB的NARX实现 第41章 定制神经网络的实现——神经网络的个性化建模与仿真 第42章 并行运算与神经网络——基于CPU/GPU的并行神经网络运算 第43章 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨