第 46 卷第 4 期
应 用 科 技
Vol.46 №.4
2019 年 7 月
Applied Science and Technology
Jul. 2019
DOI:10.11991 / yykj.201810005
超视距目标跟踪的卡尔曼滤波算法研究
郜丽鹏 ,朱嘉颖,游世勋
哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
摘 要:针对有界范围内的运动目标进行超视距跟踪时出现的量测不可靠问题,提出一种卡尔曼滤波初值选取方案,对
采用三点法求得超出界限的目标初始运动状态进行修正,再将其作为新的滤波初值,这一方法称为投影修正法。 对比传
统初值确定方法,并结合 3 种传统非线性卡尔曼滤波算法,分别在目标与观测台的初始距离为 600 和 1000 时进行仿真
验证。 仿真结果显示,与传统方法相比,应用该初值确定方法能在探测距离相对误差为 1%,探测角度误差为 0.01rad 时,
明显提高滤波初期收敛速度且滤波精度不下降。 此外,研究还发现,在利用投影修正法进行跟踪滤波时,同等条件下选
用零值修正,收敛效果更好。
关键词:无源探测;超视距目标跟踪;非线性卡尔曼滤波;初值选取
中图分类号:TN953 文献标志码:A 文章编号:1009⁃671X(2019)04⁃061⁃09
Research on Kalman filtering algorithm for target
tracking over the horizon
GAO Lipeng , ZHU Jiaying, YOU Shixun
School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:The unreliable problem of measurement in over the horizon tracking of the objects whose motion states are
upper bounded is mainly focused on. A new approach of initial value selection for Kalman tracking filter is pro⁃
posed, which is called projection correction method. If the initial value selection of the target obtained by the three
-
point method is out of the range , it will be repaired and is used as a new filtering initial value. Its a new ap⁃
proach of initial value selection for Kalman tracking filter, which is called projection correction method. Compared
to the traditional initialization method, the proposed initialization method is combined with three traditional non⁃lin⁃
ear Kalman filter algorithms in the simulation. The tests are conducted when the initial distance between the target
and the observatory are 600 and 1 000 km, respectively. The simulation results show that compared with the tradi⁃
tional method, the initialization method can significantly improve the initial convergence speed and the filtering ac⁃
curacy when the relative error of detection distance is 1% and the detection angle error is 0.01 rad. In addition, it
is also found that when the projection correction method is used for tracking filtering, correction with zero
-
value can
get better convergence effect under the same conditions.
Keywords:passive detection; over the horizon target tracking; nonlinear Kalman filtering; selection of the initial
value
收稿日期:2018
-
10
-
05.
基金项目:上海航天科技创新基金项目(SAST2017
-
068) .
作者简介: 郜丽鹏 , 男,教授,博士;
朱嘉颖, 女,硕士研究生.
通信作者:朱嘉颖, E
-
mail:471353515@ qq.com.
日益复杂的电磁作战环境对雷达系统的探测及
跟踪技术提出了新的要求。 特别是在对非线性目标
进行无源探测和超视距跟踪时,由于目标定位数据
的高度非线性,跟踪算法初期的收敛性能会大打折
扣。 卡尔曼滤波是公认速度快且性能稳定的滤波算
法之一,近几十年来,学者们针对非线性系统对其进
行了一系列改进。 其中扩展卡尔曼滤波( EKF)、无
迹卡尔曼滤波( UKF) 和容积卡尔曼滤波( CKF) 在