"深入理解NumPy:Python 数字计算的核心库教程"

5星 · 超过95%的资源 需积分: 29 54 下载量 84 浏览量 更新于2024-01-18 1 收藏 93KB DOCX 举报
NumPy是一个Python包,它是Numeric Python的简称,它由多维数组对象和用于处理数组的例程集合组成的库。在学习NumPy的详细教程之前,你需要对Python有一定的了解,并确保在你的电脑上安装了Python和NumPy。另外,一些其他软件工具如ipython、matplotlib和Scipy也可能对你有所帮助。 NumPy的主要对象是同种元素的多维数组,也就是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格。在NumPy中,维度被称为轴,轴的个数称为秩。例如,在3D空间一个点的坐标[1, 2, 3]是一个秩为1的数组,因为它只有一个轴,并且这个轴的长度为3。 NumPy提供了许多用于创建、操作和处理数组的函数和方法。你可以使用NumPy来进行数组的计算、变形、切片和索引等操作。此外,NumPy还支持广播功能,可以进行不同形状数组之间的数学运算。 要使用NumPy,首先需要导入该模块,通常使用import numpy语句来实现。然后,你可以创建一个数组并进行各种操作。比如,创建一个一维数组可以使用numpy.array()函数,再通过索引和切片来访问和操作数组中的元素。 在NumPy中,数组的形状(即各个轴的长度)可以通过shape属性获得,数组中元素的数据类型可以通过dtype属性获得。此外,NumPy还提供了很多用于数组操作的函数,比如计算数组的和、平均值、最大值、最小值等。你还可以使用NumPy进行数组的拼接、切割和转置等操作。 除了基本的数组操作外,NumPy还提供了很多用于线性代数、傅立叶变换、随机数生成等领域的函数和方法。如果你对这些领域感兴趣,NumPy也会是一个很好的工具。 总而言之,NumPy是一个强大的Python库,它为Python提供了高效的多维数组操作功能,对于数据处理和科学计算领域有着重要的作用。通过学习NumPy的详细教程,你将能够更好地掌握NumPy的各种功能和用法,从而更加高效地进行数据处理和科学计算。希望本教程能对你有所帮助,祝你学习愉快!
903 浏览量
说明:本文档所有内容来源于网络 https://www.numpy.org.cn/user/ 目录 1. NUMPY 介绍 1 1.1 什么是 NUMPY? 1 1.2 为什么 NUMPY 这么快? 3 1.3 还有谁在使用 NUMPY? 3 2. 快速入门教程 4 2.1 先决条件 4 2.2 基础知识 4 2.2.1一个例子 5 2.2.2 数组创建 6 2.2.3 打印数组 8 2.2.4 基本操作 10 2.2.5 通函数 13 2.2.6 索引、切片和迭代 14 2.3 形状操纵 18 2.3.1改变数组的形状 18 2.3.2 将不同数组堆叠在一起 20 2.3.3 将一个数组拆分成几个较小的数组 22 2.4 拷贝和视图 23 2.4.1 完全不复制 23 2.4.2 视图或浅拷贝 24 2.4.3 深拷贝 25 2.4.4 功能和方法概述 26 2.5 LESS 基础 26 广播(Broadcasting)规则 27 2.6 花式索引和索引技巧 27 2.6.1使用索引数组进行索引 27 2.6.2使用布尔数组进行索引 31 2.6.3 ix_()函数 34 2.6.4使用字符串建立索引 37 2.7线性代数 37 简单数组操作 37 2.8技巧和提示 38 2.8.1“自动”整形 39 2.8.2矢量堆叠 39 2.8.3直方图 40 2.9进一步阅读 41 3. NUMPY 基础知识 42 3.1 数据类型 42 3.1.1 数组类型之间的转换 42 3.1.2 数组标量 45 3.1.3 溢出错误 46 3.1.4 扩展精度 47 3.2 创建数组 47 3.2.1 简介 48 3.2.2 将Python array_like对象转换为Numpy数组 48 3.2.3 Numpy原生数组的创建 48 3.2.4 从磁盘读取数组 50 3.3 NUMPY与输入输出 51 3.3.1 定义输入 51 3.3.2 将行拆分为列 52 3.3.3 跳过直线并选择列 54 3.3.4 选择数据的类型 55 3.3.5 设置名称 56 3.3.6 调整转换 59 3.3.7 快捷方式函数 62 3.4 索引 62 3.4.1 赋值与引用 63 3.4.2 单个元素索引 63 3.4.3 其他索引选项 64 3.4.4 索引数组 65 3.4.5 索引多维数组 66 3.4.6 布尔或“掩码”索引数组 67 3.4.7 将索引数组与切片组合 69 3.4.8 结构索引工具 70 3.4.9 为索引数组赋值 71 3.4.10 在程序中处理可变数量的索引 72 3.5 广播 73 3.6 字节交换 78 3.6.1字节排序和ndarrays简介 78 3.6.2 更改字节顺序 80 3.7 结构化数组 82 3.7.1 介绍 82 3.7.2 结构化数据类型 83 3.7.3 索引和分配给结构化数组 88 3.7.4 记录数组 96 3.7.5 Recarray Helper 函数 98 3.8编写自定义数组容器 116 3.9子类化NDARRAY 124 3.9.1 介绍 124 3.9.2 视图投影 125 3.9.3 从模板创建 126 3.9.4 视图投影与从模板创建的关系 126 3.9.5 子类化的含义 126 3.9.6 简单示例 —— 向ndarray添加额外属性 132 3.9.7 稍微更现实的例子 —— 添加到现有数组的属性 134 3.9.8 __array_ufunc__ 对于ufuncs 135 3.9.9 __array_wrap__用于ufuncs和其他函数 139 3.9.10 额外的坑 —— 自定义的 __del__ 方法和 ndarray.base 142 3.9.11 子类和下游兼容性 143 4. 其他杂项 144 4.1 IEEE 754 浮点特殊值 144 4.2 NUMPY 如何处理数字异常的 146 4.3 示例 146 4.4 连接到 C 的方式 147 4.4.1 不借助任何工具, 手动打包你的C语言代码。 147 4.4.2 Cython 148 4.4.3 ctypes 148 4.4.4 SWIG(自动包装发生器) 149 4.4.5 scipy.weave 149 4.4.6 Psyco 149 5. 与MATLAB比较 149 5.1 介绍 150 5.2 一些关键的差异 150 5.3 'ARRAY'或'MATRIX'?我应该使用哪个? 151 5.3.1 简答 151 5.3.2 长答案 151 5.4 MATLAB 和 NUMPY粗略的功能对应表 153 5.4.1 一般功能的对应表 153 5.4.2 线性代数功能对应表 154 5.5 备注 161 5.6 自定义您的环境 163 5.7 链接 164 6. 从源代码构建 164 6.1 先决条件 164 6.2 基本安装 164 6.3 测试 165 并行构建 165 6.4 FORTRAN ABI不匹配 165 6.4.1 选择fortran编译器 166 6.4.2 如何检查BLAS / LAPACK /地图集ABI 166 6.5 加速BLAS / LAPACK库 166 6.5.1 BLAS 166 6.5.2 LAPACK 167 6.5.3 禁用ATLAS和其他加速库 167 6.6 提供额外的编译器标志 168 6.7 使用ATLAS支持构建 168 7. 使用NUMPY的C-API 168 7.1 如何扩展NUMPY 168 7.1.1 编写扩展模板 169 7.1.2 必需的子程序 169 7.1.3 定义函数 171 7.1.4 处理数组对象 175 7.1.5 示例 180 7.2 使用PYTHON作为胶水 182 7.2.1 从Python调用其他编译库 183 7.2.2 手工生成的包装器 183 7.2.3 f2py 184 7.2.4 用Cython 191 7.2.5 ctypes 196 7.2.6 您可能会觉得有用的其他工具 206 7.3 编写自己的UFUNC 208 7.3.1 创建一个新的ufunc 208 7.3.2 示例非ufunc扩展名 209 7.3.3 一种dtype的NumPy ufunc示例 215 7.3.4 示例具有多个dtypes的NumPy ufunc 221 7.3.5 示例具有多个参数/返回值的NumPy ufunc 230 7.3.6 示例带有结构化数组dtype参数的NumPy ufunc 235 7.4 深入的知识 241 7.4.1 迭代数组中的元素 242 7.4.2 用户定义的数据类型 246 7.4.3 在C中对ndarray进行子类型化 249