新方法:Logistic岭回归模型的岭参数估计与性能比较
161 浏览量
更新于2024-09-04
收藏 448KB PDF 举报
本文探讨了在Logistic回归模型背景下,特定的岭参数性质,由杨成敏和黎雅莲两位作者针对Logistic岭回归(LRR)模型提出了新的估计方法。文章关注的是通过极大似然估计(ML)来确定模型中的岭参数k。他们采用蒙特卡洛模拟技术,对比了新方法估计的岭参数k与之前kibria et al. (2012)所提出的参数在实际应用中的性能。
研究的核心是评估和比较这些新方法对于岭参数k的估计效果,包括均方误差(MSE)、平均值和标准差。通过一系列模拟实验,结果显示,Logistic岭回归模型在处理多重共线性问题时展现出优于传统极大似然理论的性能。新提出的参数估计策略在实际应用中显示出更高的合理性,尤其是在减少预测误差和稳定性的方面。
文章的创新之处在于它不仅提供了理论上的分析,还通过实证研究证实了新方法的有效性。这对于解决Logistic回归模型中常见的变量选择和参数估计难题具有重要的实践价值。同时,作者还强调了岭回归在金融统计领域中的应用,表明了这一研究成果在实际业务场景中的广阔前景。
关键词包括岭参数、Logistic回归、多重共线性、岭回归估计以及极大似然估计方法,这些都是理解论文核心内容的关键术语。这篇首发论文深入探讨了Logistic回归模型中岭参数的选择策略,为相关领域的研究者提供了实用的工具和理论支持。
2022-01-12 上传
2023-09-01 上传
104 浏览量
573 浏览量
点击了解资源详情
503 浏览量
点击了解资源详情
点击了解资源详情
点击了解资源详情

weixin_38722464
- 粉丝: 4
最新资源
- A7Demo.appstudio:探索JavaScript应用开发
- 百度地图范围内的标注点技术实现
- Foobar2000绿色汉化版:全面提升音频播放体验
- Rhythm Core .NET库:字符串与集合扩展方法详解
- 深入了解Tomcat源码及其依赖包结构
- 物流节约里程法的文档整理与实践分享
- NUnit3.vsix:快速安装NUnit三件套到VS2017及以上版本
- JQuery核心函数使用速查手册详解
- 多种风格的Select下拉框美化插件及其js代码下载
- Mac用户必备:SmartSVN版本控制工具介绍
- ELTE IK Web编程与Web开发课程内容详解
- QuartusII环境下的Verilog锁相环实现
- 横版过关游戏完整VC源码及资源包
- MVC后台管理框架2021版:源码与代码生成器详解
- 宗成庆主讲的自然语言理解课程PPT解析
- Memcached与Tomcat会话共享与Kryo序列化配置指南