一般黎曼流形上高阶平均曲率的变分公式与应用

下载需积分: 0 | PDF格式 | 176KB | 更新于2024-07-16 | 14 浏览量 | 0 下载量 举报
收藏
在本文《高阶平均曲率的变分公式》中,作者徐玲和葛建全来自北京师范大学数学科学学院,他们针对一般黎曼流形中n维子流形的研究深入探讨了一个关键的数学概念——2p阶平均曲率泛函。他们成功地推导出了这一泛函的第一变分公式,这是微分几何领域的一个重要进展,因为它提供了计算和分析高阶几何性质的有效工具。 变分公式是优化理论的核心组成部分,它通过最小化或最大化特定函数(在这个案例中是2p阶平均曲率)来寻找最佳解或临界点。在高维空间中,这样的分析对于理解子流形的稳定性和形状至关重要。徐玲和葛建全的工作表明,对于封闭的复射影空间中的闭复子流形,它们是总2p阶平均曲率泛函的临界点,被称为相对2p极小子流形。这个结果意味着这些子流形在满足特定条件时,其2p阶平均曲率具有最优特性。 接下来,文章进一步探讨了相对2p极小子流形与实空间形式中的austere子流形之间的关系。austere子流形是一个特殊的几何概念,它与高斯曲率和切向量场的特定行为密切相关,通常被认为代表了一种特殊的曲率结构。作者揭示了这两种不同类型的子流形之间可能存在的内在联系,这不仅扩展了我们对复杂几何结构的理解,也为未来的几何研究提供了新的视角。 此外,文中还提及了一个特殊变分问题,这可能是针对特定几何背景下的额外研究方向,可能涉及到更深层次的数学挑战和应用。通过解决这个问题,研究人员可以探索更多的几何现象,并可能推动相关领域的技术进步。 这篇首发论文提供了对高阶平均曲率变分公式的重要见解,对于深化我们对黎曼流形子流形的几何特性的理解具有重要意义。它不仅为理论研究提供了坚实的基础,而且可能激发实际应用中的创新,例如在计算机图形学、材料科学和物理学等领域中的应用。

相关推荐

filetype

帮我地道的翻译:The differential variational inequalities ((DVIs), for short) are useful for the study of models involving both dynamics and constraints in the form of in￾equalities. They arise in many applications: electrical circuits with ideal diodes, Coulomb friction problems for contacting bodies, economical dynamics, dynamic traffic networks. Pang and Stewart [26], [27] established the existence, unique￾ness, and Lipschitz dependence of solutions subject to boundary conditions for (DVIs) in finite dimensional spaces. Han and Pang investigated a class of dif￾ferential quasi-variational inequalities in [11], and Li, Huang and O’Regan [18] studied a class of differential mixed variational inequalities in finite dimensional Well-Posedness of Differential Mixed Quasi-Variational-Inequalities 137 spaces. Gwinner [8] obtained an equivalence result between (DVIs) and projected dynamical systems. In [9] he also proved a stability property for (DVIs) by using the monotonicity method of Browder and Minty, and Mosco set convergence. Chen and Wang [4] studied dynamic Nash equilibrium problems which have the formulation of differential mixed quasi-variational inequalities. Elastoplastic contact problems can also be incorporated into (DMQVIs) formulation because general dynamic processes in the nonsmooth unilateral contact problems are governed by quasi-variational inequalities. A numerical study for nonsmooth contact problems with Tresca friction can be found in [10], Liu, Loi and Obukhovskii [19] studied the existence and global bifurcation for periodic solutions of a class of (DVIs) by using the topological degree theory for multivalued maps and the method of guiding functions. For more details about (DVIs) we refer to [3], [30], [12], [22]–[21].

183 浏览量