秒杀系统设计:如何应对高并发写请求?

需积分: 0 0 下载量 103 浏览量 更新于2024-08-05 收藏 478KB PDF 举报
"17-消息队列:秒杀时如何处理每秒上万次的下单请求?_For_group_share1" 在面对高并发的秒杀场景时,系统的性能优化显得至关重要。通常,大部分系统在初期是读多写少的情况,但随着业务发展,如秒杀活动等高并发写请求的场景会出现,对系统的处理能力提出严峻挑战。在这个问题上,我们可以采取多种策略来应对。 首先,针对查询热点数据,如商品信息,可以采用缓存策略。利用缓存系统(如Redis或Memcached)将高频访问的数据存储在内存中,减少数据库的压力。对于静态内容如图片和视频,通过静态化处理,结合内容分发网络(CDN)服务,使得用户可以直接从边缘节点获取,避免直接请求到Web服务器,进一步减轻服务器负担。 其次,实施限流策略也是关键。可以对来自同一用户、IP或设备的重复请求进行限制,比如设置请求频率阈值,超过阈值的请求将被拒绝或延迟处理,以此防止瞬间流量过大导致系统崩溃。 然而,当秒杀开始,大量用户同时发起下单请求时,这些写操作会直接冲击数据库。此时,引入消息队列成为解决高并发问题的有效手段。消息队列可以作为临时数据缓冲区,接收前端发送的下单请求,而不是让这些请求直接到达数据库。这样,数据库的压力得到缓解,可以按照消息队列中的顺序逐个处理订单,确保系统稳定运行。 消息队列的核心价值在于解耦和异步处理。它将高并发的瞬时压力转化为后台处理的平滑流量,使得应用可以按自己的节奏处理任务,而不会被突如其来的请求洪峰压垮。同时,它提供了故障隔离的能力,即使某些服务出现异常,消息也不会丢失,可以在服务恢复后继续处理,提高了系统的可用性。 常见的消息队列产品有RabbitMQ、Kafka、ActiveMQ等,它们都有各自的特点和适用场景。例如,RabbitMQ适合小型项目,具有良好的稳定性和易用性;Kafka则更擅长大数据量的实时处理,适合日志分析、流处理等场景。 在实际部署中,还需要注意消息队列的容量规划,避免消息堆积导致队列溢出。同时,为了保证数据一致性,需要考虑如何正确设计消息确认机制,防止消息丢失或重复消费。此外,监控和报警系统也是必不可少的,以便在出现问题时及时发现并进行干预。 总结来说,面对秒杀时每秒上万次的下单请求,我们可以采用缓存、限流和消息队列等多种技术手段,优化系统性能,提高可扩展性和可用性,确保业务的顺利进行。在设计和实现过程中,需根据具体业务需求和技术选型,灵活运用各种策略,构建出能够抵御高并发冲击的健壮系统。
2023-05-24 上传

for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。在这个算法中取消对队列积压的考虑该怎么修改

2023-05-24 上传

for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。,在这个算法中取消队列积压的考虑该怎么修改

2023-05-24 上传

for i in range(N): arrival_lambda[i] = 1 + 0.1 * i for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。 # 存储最大结果 Obj[i_idx],rate[i_idx,:],energy[i_idx,:] = r_list[k_idx_his[-1]]怎么修改代码使得队列Q、Y变化且代码不考虑队列积压

2023-05-24 上传

for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。,在这个算法中取消对队列积压的考虑该怎么修改

2023-05-24 上传

Q = np.zeros((n,N)) # MbitsW数据队列矩阵 Y = np.zeros((n,N)) # mJ的虚拟能量队列,用于存储初始化为零的二维数值数据 Obj = np.zeros(n) # 在解决问题26之后的目标值,初始化为零 energy = np.zeros((n,N)) # 能源消耗数组矩阵 rate = np.zeros((n,N)) # 实现的计算速率 for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode),怎么修改算法使算法不考虑队伍积压问题

2023-05-24 上传