802.11无线协议详解与比较:b/g/n的区别及802.11n的优势

需积分: 49 70 下载量 173 浏览量 更新于2024-08-07 收藏 1.43MB PDF 举报
"这篇资源是一个关于无线通信协议的入门教程,特别关注了802.11系列标准,包括802.11b/g之间的差异以及802.11n的技术优势。同时,它也涉及到了无线网络历史、IEEE和WiFi联盟的角色,以及相关认证标准。" 在802.11b/g协议之间,存在几个关键差异点。首先,它们的吞吐能力不同,802.11g的最高数据速率高于802.11b,提供了高达54Mbps的速率,而802.11b的最大速率仅为11Mbps。其次,两种协议使用的技术也有所不同,尽管两者都工作在2.4GHz频段,但802.11g采用了更先进的调制技术,如OFDM(正交频分复用),以提高传输效率。此外,支持的数据速率也是它们的区别之一,802.11g增加了对高速率的支持。 接着,802.11n与802.11a/b/g相比,具有显著的技术优势。它将理论传输速率提升到了600Mbps,这得益于引入了MIMO(多输入多输出)技术,该技术通过使用多个天线同时传输和接收数据,大大增强了无线信号的性能和稳定性。此外,802.11n还保持了对802.11a/b/g的向下兼容性,使得旧设备也能在新网络中工作。 无线网络的历史可以追溯到二次大战期间,那时无线通信技术开始被应用于军事用途。IEEE(电气和电子工程师协会)并不是负责美国无线频率使用的标准组织,它主要负责制定802.11等无线局域网标准。实际上,负责实现WLAN技术互操作性认证的是WiFi联盟,它对符合802.11标准的设备进行认证,确保它们能够顺利协作。IEEE虽然不负责认证,但它们制定了一系列802.11标准,如802.11a/b/g/n/i/s等。而WiFI联盟则创建了WPA和WPA2这样的安全标准,用于增强无线网络的安全性,这些标准基于IEEE的802.11i草案。 这个教程适合那些正在准备HCNP(华为认证网络专业人员)无线认证或相关题库,如H12-311考试的考生。通过学习这些基础知识,考生可以更好地理解无线网络的基本原理、协议差异和技术进步。同时,鸿鹄论坛提供了相关的题库资源和考试服务,帮助考生进行有效的备考。
2023-05-31 上传

Log data follows: | DEBUG: Executing shell function do_configure | CMake Warning at CMakeLists.txt:7 (message): | Build type not set, falling back to Release mode. | | To specify build type use: | -DCMAKE_BUILD_TYPE=<mode> where <mode> is Debug or Release. | | | -- Building without demo. To enable demo build use: -DWITH_DEMO=True | -- The C compiler identification is GNU 7.3.0 | -- The CXX compiler identification is GNU 7.3.0 | -- Check for working C compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-gcc | -- Check for working C compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-gcc -- works | -- Detecting C compiler ABI info | -- Detecting C compiler ABI info - done | -- Detecting C compile features | -- Detecting C compile features - done | -- Check for working CXX compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-g++ | -- Check for working CXX compiler: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/aarch64-niic-linux/aarch64-niic-linux-g++ -- works | -- Detecting CXX compiler ABI info | -- Detecting CXX compiler ABI info - done | -- Detecting CXX compile features | -- Detecting CXX compile features - done | -- Found PkgConfig: /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/recipe-sysroot-native/usr/bin/pkg-config (found version "0.29.2") | -- Checking for module 'uuid' | -- Found uuid, version 2.32.1 | -- Output libraries to /home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/git/runtime/Cpp/dist | CMake Error at runtime/CMakeLists.txt:104 (install): | install TARGETS given no LIBRARY DESTINATION for shared library target | "antlr4_shared". | | | CMake Error at runtime/CMakeLists.txt:107 (install): | install TARGETS given no ARCHIVE DESTINATION for static library target | "antlr4_static". | | | -- Configuring incomplete, errors occurred! | See also "/home/wu/test_D9/D9_PTG1.5/build-d9/tmp/work/aarch64-niic-linux/antlr4/4.7.2-r0/build/CMakeFiles/CMakeOutput.log".这是报错的log,如何解决这个问题

2023-07-11 上传

CMake Warning: Ignoring extra path from command line: "../openMVS" -- Detected version of GNU GCC: 94 (904) Compiling with C++17 CMake Error at /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:751 (message): Compiling the CUDA compiler identification source file "CMakeCUDACompilerId.cu" failed. Compiler: /usr/bin/nvcc Build flags: Id flags: --keep;--keep-dir;tmp -v The output was: 255 #$ _SPACE_= #$ _CUDART_=cudart #$ _HERE_=/usr/lib/nvidia-cuda-toolkit/bin #$ _THERE_=/usr/lib/nvidia-cuda-toolkit/bin #$ _TARGET_SIZE_= #$ _TARGET_DIR_= #$ _TARGET_SIZE_=64 #$ NVVMIR_LIBRARY_DIR=/usr/lib/nvidia-cuda-toolkit/libdevice #$ PATH=/usr/lib/nvidia-cuda-toolkit/bin:/usr/local/cuda-11.8/bin:/home/xujx/anaconda3/bin:/home/xujx/anaconda3/condabin:/home/xujx/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin #$ LIBRARIES= -L/usr/lib/x86_64-linux-gnu/stubs -L/usr/lib/x86_64-linux-gnu #$ rm tmp/a_dlink.reg.c #$ gcc -D__CUDA_ARCH__=300 -E -x c++ -DCUDA_DOUBLE_MATH_FUNCTIONS -D__CUDACC__ -D__NVCC__ -D__CUDACC_VER_MAJOR__=10 -D__CUDACC_VER_MINOR__=1 -D__CUDACC_VER_BUILD__=243 -include "cuda_runtime.h" -m64 "CMakeCUDACompilerId.cu" > "tmp/CMakeCUDACompilerId.cpp1.ii" #$ cicc --c++14 --gnu_version=90400 --allow_managed -arch compute_30 -m64 -ftz=0 -prec_div=1 -prec_sqrt=1 -fmad=1 --include_file_name "CMakeCUDACompilerId.fatbin.c" -tused -nvvmir-library "/usr/lib/nvidia-cuda-toolkit/libdevice/libdevice.10.bc" --gen_module_id_file --module_id_file_name "tmp/CMakeCUDACompilerId.module_id" --orig_src_file_name "CMakeCUDACompilerId.cu" --gen_c_file_name "tmp/CMakeCUDACompilerId.cudafe1.c" --stub_file_name "tmp/CMakeCUDACompilerId.cudafe1.stub.c" --gen_device_file_name "tmp/CMakeCUDACompilerId.cudafe1.gpu" "tmp/CMakeCUDACompilerId.cpp1.ii" -o "tmp/CMakeCUDACompilerId.ptx" #$ ptxas -arch=sm_30 -m64 "tmp/CMakeCUDACompilerId.ptx" -o "tmp/CMakeCUDACompilerId.sm_30.cubin" ptxas fatal : Value 'sm_30' is not defined for option 'gpu-name' # --error 0xff -- Call Stack (most recent call first): /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:8 (CMAKE_DETERMINE_COMPILER_ID_BUILD) /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:53 (__determine_compiler_id_test) /home/xujx/.local/lib/python3.8/site-packages/cmake/data/share/cmake-3.26/Modules/CMakeDetermineCUDACompiler.cmake:307 (CMAKE_DETERMINE_COMPILER_ID) CMakeLists.txt:109 (ENABLE_LANGUAGE)是什么问题

2023-07-08 上传