
第 36 卷第 11 期
2019 年 11 月
控 制 理 论 与 应 用
Control Theory & Applications
Vol. 36 No. 11
Nov. 2019
French-DeGroot社社社会会会网网网络络络模模模型型型的的的结结结构构构辨辨辨识识识与与与参参参数数数估估估计计计
董艳萍
1
, 任晓涛
1
, 赵文虓
1,2†
(1. 中国科学院 数学与系统科学研究院 系统控制重点实验室, 北京 100190;
2. 中国科学院大学 数学科学学院, 北京 100049)
摘要: 近年来社会网络的研究受到越来越多的关注. 本文研究基于French-DeGroot模型的社会网络参数和结构辨
识问题, 通过网络中个体所持的观点来判断个体间是否存在影响关系、进一步估计个体之间影响的大小. 具体而言:
假设网络存在固执个体(stubborn agents) 和非固执个体(non-stubborn agents)两类, 当固执个体的观点为零均值独立
同分布随机变量序列时, 利用最小二乘算法估计网络未知参数, 证明了估计的强一致性并给出收敛速度; 进一步, 构
造结构辨识算法判断个体间是否存在影响关系, 证明了结构辨识算法的有限时间收敛性. 最后给出仿真例子验证
算法的有效性.
关键词: 社会网络; 最小二乘算法; 参数估计; 结构辨识
引用格式: 董艳萍, 任晓涛, 赵文虓. French-DeGroot社会网络模型的结构辨识与参数估计. 控制理论与应用,
2019, 36(11): 1905 – 1911
DOI: 10.7641/CTA.2019.90648
Structure inference and parameter identification for
French-DeGroot type of social networks
DONG Yan-ping
1
, REN Xiao-tao
1
, ZHAO Wen-xiao
1,2†
(1. Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: In recent years, the research on social networks has attracted much attention. In this paper we consider
the parameter and structure identification of social networks based on the French-DeGroot model. We assume that there
are two types of agents in the network, i.e., stubborn agents and non-stubborn agents. Based on the assumption that
the opinions of the stubborn agents are a sequence of independent and identically distributed random variables with zero
expectation, the parameter matrix of the French-DeGroot model is recursively estimated by the least-square algorithm, and
strong consistency of estimates as well as convergence rate are established. Then structure identification algorithm for the
network is proposed and it is proved that with the estimates we can infer the structure of the network, i.e., whether mutual
influence existing between agents can be exactly identified with finite number of observations. Finally, numerical examples
are given to testify performance of the algorithms.
Key words: social network; least squares algorithm; parameter estimation; structure identification
Citation: DONG Yanping, REN Xiaotao, ZHAO Wenxiao. Structure inference and parameter identification for French-
DeGroot type of social networks. Control Theory & Applications, 2019, 36(11): 1905 – 1911
1 引引引言言言
社会网络是由很多个体及其之间的影响关系组成
的复杂系统. 个体之间通过这些关系互相影响, 从而
产生了复杂的社会现象. 社会网络广泛存在于日常生
活 中, 比如手机社交网 络, 个人与亲人、朋 友 、同
事、陌生人等之间复杂的社会关系所组成的网络等.
通常社会网络的个体数量大, 个体间的关系比较复杂,
并且个体间的关系随着时间的变化也在不断更新, 通
收稿日期: 2019−08−03; 录用日期: 2019−11−29.
†
通信作者. E-mail: wxzhao@amss.ac.cn.
本文责任编委: 刘淑君.
国家重点研发计划资助项目“不确定性系统智能控制的基础数学理论与方法”(2018YFA0703800), 国家自然科学基金项目(61822312,61573345)
资助.
Supported by the National Key Research and Development Program of China (2018YFA0703800) and the National Natural Science Foundation of
China(61822312, 61573345).