图像处理中的软计算与机器学习进展

需积分: 1 1 下载量 109 浏览量 更新于2024-07-18 收藏 24.75MB PDF 举报
Advances in Soft Computing and Machine Learning in Image Processing 本书《Advances in Soft Computing and Machine Learning in Image Processing》是关于软计算和机器学习在图像处理领域的最新进展。该书汇集了关于机器学习技术与图像处理方法结合的最佳章节。这些主题不仅在科学社区中非常重要,也在工程和医学等领域中具有广泛的应用前景。 在图像处理和计算机视觉领域,软计算和机器学习技术的应用非常广泛。本书中每章节都讨论了图像处理和计算机视觉领域中的重要问题,并且展示了软计算和机器学习技术在这些问题中的应用。 软计算是一种基于模糊逻辑、神经网络和遗传算法等技术的计算方法。它可以处理不确定性和模糊性问题,具有很强的鲁棒性和泛化能力。在图像处理领域,软计算技术可以应用于图像增强、图像分割、图像识别等领域。 机器学习是指利用机器学习算法来自动学习和改进图像处理方法的技术。机器学习算法可以根据图像特征来分类、聚类和回归图像。这些算法可以应用于图像识别、图像分类、图像检索等领域。 本书还讨论了软计算和机器学习技术在工程和医学等领域中的应用。例如,在医学成像领域,软计算和机器学习技术可以应用于图像分割、图像识别和图像分析等方面。 本书《Advances in Soft Computing and Machine Learning in Image Processing》是关于软计算和机器学习在图像处理领域的最新进展的综述。该书涵盖了软计算和机器学习技术在图像处理领域中的应用,并讨论了这些技术在工程和医学等领域中的前景。 知识点: 1. 软计算技术在图像处理领域中的应用 2. 机器学习技术在图像处理领域中的应用 3. 软计算和机器学习技术在图像处理领域中的结合 4. 软计算技术在图像增强、图像分割和图像识别等领域中的应用 5. 机器学习算法在图像分类、图像检索和图像识别等领域中的应用 6. 软计算和机器学习技术在工程和医学等领域中的应用前景 了解更多关于软计算和机器学习在图像处理领域中的应用,可以查看相关的研究论文和技术报告。
2018-03-06 上传
Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It consists of 11 contributions that features illumination change detection, generator of electronic educational publications, intelligent call triage system, recognition of rocks at uranium deposits, graphics processing units, mathematical model of hit phenomena, selection and mutation in genetic algorithm, hands and arms motion estimation, application of wavelet network, Kanizsa triangle illusion, and support vector machine regression. Also, it describes how to apply the machine learning for the intelligent systems. This edition is published in original, peer reviewed contributions covering from initial design to final prototypes and verifications