韩家炜《数据挖掘概念与技术》第二版:经典教程

需积分: 10 7 下载量 61 浏览量 更新于2024-07-21 收藏 13.94MB PDF 举报
《数据挖掘概念与技术》(Data Mining: Concepts and Techniques, Second Edition)是韩家炜(Jiawei Han)和米歇琳·坎贝尔(Micheline Kamber)合著的经典之作,作为 Morgan Kaufmann 系列数据管理系统的著作之一,它在教学和科研领域享有盛誉。本书深入探讨了数据挖掘的核心概念和技术,为读者提供了全面理解数据挖掘这一复杂领域的实用工具。 该书首先介绍了数据挖掘的基本概念,包括其定义、目标以及在商业智能和决策支持系统中的应用。作者详细阐述了数据挖掘的过程,包括数据预处理、特征选择、模式识别和模型评估等关键步骤。书中还涵盖了各种数据挖掘技术,如分类、回归、聚类、关联规则学习和序列模式挖掘等,这些都是数据分析师和机器学习工程师必备的知识点。 针对数据库查询,书中的内容可能会涉及到 XML 查询语言(如 XQuery、XPath 和 SQL/XML)的使用,这些技术在处理结构化和半结构化数据时至关重要。此外,作者还会介绍多维和度量数据结构的基础,这对于构建高效的数据仓库和分析系统至关重要。 对于那些想要深入了解 SQL 技术的读者,书中可能包含 Joe Celko 的《SQL for Smarties》第三版,讲解高级 SQL 编程技巧,帮助开发者更有效地操作数据库。另外,移动对象数据库(Moving Objects Databases)也是研究范畴的一部分,它关注动态和地理位置相关的数据处理。 模糊建模和遗传算法在数据挖掘中的应用是本书讨论的另一个重点,这些非传统的方法为解决实际问题提供了新的解决方案。此外,数据建模基础,如《Data Modeling Essentials》第三版,强调了逻辑设计的重要性和实践应用,而《Location-Based Services》则探讨了基于位置的服务技术。 为了方便用户可视化和设计复杂的数据库模型,《Database Modeling with Microsoft® Visio for Enterprise Architects》提供了使用 Visio 工具的实际指导。设计和实施数据模型时,这本书将理论与实践紧密结合,确保读者能够更好地理解和应用数据挖掘技术。 《数据挖掘概念与技术》第二版是一本深度且实用的教材,不仅覆盖了数据挖掘的核心理论,还展示了如何将其应用于现实世界的项目,为从事数据分析、机器学习和数据库管理的专业人士提供了宝贵的参考资源。
2018-12-15 上传
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.