基于Logistic映射的图像加密技术研究

版权申诉
5星 · 超过95%的资源 2 下载量 160 浏览量 更新于2024-10-04 收藏 589KB ZIP 举报
资源摘要信息:"logistic_matlab.zip_logistic map_logistic 加密_logistic-map_图像加密ma" 混沌映射是一种非线性动力学系统的数学模型,它能够展现出对初始条件极其敏感的混沌行为。在密码学中,混沌映射因其在小的参数变化下能产生极大的输出差异而被用来设计加密算法。logistic映射是混沌映射中的一种,它是简单且广泛研究的非线性动态系统模型。 logistic映射通常定义为一个二次差分方程,其表达式为:x_{n+1} = r * x_n * (1 - x_n),其中x_n属于[0,1]区间,r为控制参数。当控制参数r在某个范围内变化时,logistic映射的行为会从稳定状态转变为周期行为,最终进入混沌状态。由于混沌系统具有不可预测性、长期不可重复性和对初始条件的极端敏感性等特性,因此成为了加密算法的一个重要基础。 图像加密是密码学的一个分支,它涉及对图像内容的保护,使其无法在未经授权的情况下被访问或理解。在基于logistic混沌映射的图像加密中,一般使用该映射来生成伪随机序列,这些序列可以用作加密密钥或直接用于图像像素的变换。 在Matlab环境下实现的logistic映射图像加密算法通常遵循以下步骤: 1. 初始化图像数据:首先,需要加载需要加密的灰度图像或彩色图像,并将其像素值转换为适合加密算法处理的格式。 2. 参数设置:为logistic映射设置适当的控制参数r和初始条件x_0。这些参数需要保密,以保证加密的安全性。 3. 生成混沌序列:利用logistic映射生成一个伪随机序列。这个序列的长度应至少与图像的像素总数相等。 4. 加密变换:将生成的混沌序列用于加密变换。这个变换可以是对图像像素值的直接替换,也可以是更复杂的数学操作,比如扩散和混淆。扩散操作的目的是将图像信息均匀分布在整个图像中,而混淆操作则用于增加加密图像与原始图像之间的统计差异。 5. 输出加密图像:经过上述变换后的图像就是加密后的结果。由于混沌系统的特性,即使是微小的参数变化都会导致加密结果的巨大不同,从而为图像加密提供了一定的安全保障。 在实际应用中,可能还会涉及到一些其他的优化措施,如密钥管理、加密算法的抗攻击性能评估、以及算法效率的优化等。 基于Matlab的logistic映射图像加密具有易实现、灵活性高、加密效果好等优点。但同时也存在一些潜在的问题,比如密钥空间的大小、算法的抗差分攻击能力等,这些都是设计者在实践中需要不断优化和考虑的问题。此外,随着攻击技术的发展,如深度学习等新兴技术可能会对传统的混沌加密算法构成新的威胁,因此,研究者需要不断创新和改进加密技术,以适应不断变化的安全需求。

把这段代码的PCA换成LDA:LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=1) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])

2023-07-22 上传

报错ValueError: np.nan is an invalid document, expected byte or unicode string. 怎么修改import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 读取电影评论数据集 data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk') x = v.fit_transform(df['eview'].apply(lambda x: np.str_(x))) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42) # 创建CountVectorizer对象进行词频统计和向量化 count_vectorizer = CountVectorizer() X_train_count = count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # 创建TfidfVectorizer对象进行TF-IDF计算和向量化 tfidf_vectorizer = TfidfVectorizer() X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # 创建逻辑回归分类器并在CountVectorizer上进行训练和预测 classifier_count = LogisticRegression() classifier_count.fit(X_train_count, y_train) y_pred_count = classifier_count.predict(X_test_count) accuracy_count = accuracy_score(y_test, y_pred_count) print("Accuracy using CountVectorizer:", accuracy_count) # 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测 classifier_tfidf = LogisticRegression() classifier_tfidf.fit(X_train_tfidf, y_train) y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf) accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf) print("Accuracy using TfidfVectorizer:", accuracy_tfidf)

2023-05-27 上传

优化这段代码 for j in n_components: estimator = PCA(n_components=j,random_state=42) pca_X_train = estimator.fit_transform(X_standard) pca_X_test = estimator.transform(X_standard_test) cvx = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) cost = [-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15] gam = [3, 1, -1, -3, -5, -7, -9, -11, -13, -15] parameters =[{'kernel': ['rbf'], 'C': [2x for x in cost],'gamma':[2x for x in gam]}] svc_grid_search=GridSearchCV(estimator=SVC(random_state=42), param_grid=parameters,cv=cvx,scoring=scoring,verbose=0) svc_grid_search.fit(pca_X_train, train_y) param_grid = {'penalty':['l1', 'l2'], "C":[0.00001,0.0001,0.001, 0.01, 0.1, 1, 10, 100, 1000], "solver":["newton-cg", "lbfgs","liblinear","sag","saga"] # "algorithm":['auto', 'ball_tree', 'kd_tree', 'brute'] } LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=0) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) var = Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])

2023-07-14 上传