Python实现LDA线性判别分析的MATLAB风格指南
180 浏览量
更新于2024-08-31
1
收藏 354KB PDF 举报
"Python实现线性判别分析(LDA)的MATLAB方式"
线性判别分析(LDA)是一种统计学方法,常用于多类别的分类任务,尤其在高维数据降维时表现出色。LDA的核心思想是寻找一个线性变换,将原始数据投影到一个低维空间中,使得不同类别的样本间距离最大化,同时保持同一类别内部的样本距离最小化,从而提高分类的准确性。这种方法与主成分分析(PCA)不同,PCA主要是为了无损地保留数据信息,而LDA则考虑了类别信息,是监督学习的一种降维手段。
LDA的关键步骤包括:
1. 计算类别内样本协方差矩阵($S_w$)和总样本协方差矩阵($S_b$)。类别内协方差矩阵是每个类别样本的协方差矩阵的加权平均,总样本协方差矩阵则是所有样本的协方差矩阵。
2. 针对监督学习的特性,LDA的目标是最大化类间距离(即$S_b$)和最小化类内距离(即$S_w$)。通过Fisher判别准则,我们寻求最大化以下比例:
$$\frac{|\text{det}(S_b)|}{|\text{det}(S_w)|}$$
这等价于求解矩阵$S_w^{-1}S_b$的特征值和特征向量。最大的特征值对应的特征向量决定了最佳的投影方向,这将使类别间的区分度最大。
3. 最优的投影方向W是矩阵$S_w^{-1}S_b$的最大特征值对应的特征向量。通常,我们可以选择不超过类别数减一(C-1)的最优特征向量作为投影轴,因为这些特征向量将数据投影到一个低维空间,保持最大的类间距离。
4. 投影数据:计算每个样本在这些特征向量上的投影点,得到低维表示的新数据。这可以通过矩阵乘法实现,即将原始数据乘以投影矩阵W。
在MATLAB中实现LDA,首先需要准备训练数据集,然后按照上述步骤进行计算。代码通常包括数据预处理、计算协方差矩阵、求解特征值和特征向量,以及投影数据到新空间。MATLAB的`eig`函数可以用来计算特征值和特征向量,而数据的投影则可以用矩阵乘法完成。
LDA在机器学习和数据分析领域广泛应用,特别是在文本分类、人脸识别和高维数据预处理中。通过合理地运用LDA,可以有效地降低数据的复杂性,提升模型的分类性能。
2018-11-05 上传
点击了解资源详情
2021-06-07 上传
2021-05-29 上传
点击了解资源详情
2018-10-01 上传
2021-05-22 上传
抹蜜茶
- 粉丝: 303
- 资源: 935
最新资源
- conjonction-sitev3
- work-nexgen-codings
- 屋面工程安全技术交底.zip
- PathFindingVisualizer
- stitch-blockchain:MongoDB针脚作为区块链存储的演示
- contacts-manager:Voxie评估项目
- 摄影行业网站模版
- Statistical-Thinking-for-Problem-Solving:这是资料库,其中包含我在SAS JMP提供的Coursera的“工业问题解决的统计思考”课程的笔记和练习
- ANNOgesic-0.7.0-py3-none-any.whl.zip
- 杭华股份2020年年度报告.rar
- 松弛机器人游戏:Node.js + Typescript
- nhsui-docs
- dotnet C# 基于 INotifyPropertyChanged 实现一个 CLR 属性绑定辅助类.rar
- 用来点云配准的斯坦福兔子和房间的pcd文件.zip
- 基于QT的文件分割与合并程序源码file_split.zip
- 回归:机器学习方法