VC++实现的Web图像识别与检索

5星 · 超过95%的资源 需积分: 10 30 下载量 137 浏览量 更新于2024-07-26 收藏 1.42MB DOC 举报
"基于VC++的图像识别是一个用于课程设计的项目,主要涉及Web图像检索技术,包括基于文本和基于内容的检索方法。该设计强调了图像的内容特征,如颜色、纹理和形状,并通过VC++实现了一个模拟的Web图像检索系统,用以验证基于内容的图像检索算法的有效性。关键词包括Web图像检索、特征提取、颜色直方图和相似度计算。" 在计算机科学领域,图像识别是一个重要的研究方向,尤其随着计算能力的提升和互联网的快速发展,图像信息的处理变得越来越重要。基于VC++的图像识别项目主要关注如何从互联网上的大量图像数据中检索出用户感兴趣的图像。 首先,项目介绍了Web图像检索的基本概念。在互联网环境中,图像检索主要分为两类:基于文本的图像检索和基于内容的图像检索。基于文本的检索依赖于图像的元数据,如文件名、标题或用户添加的标签,而基于内容的检索则直接分析图像本身的视觉特性,例如颜色、纹理和形状,以找到与查询图像最相似的图像。 颜色特征是图像内容识别中的关键因素。颜色直方图是一种常见的表示图像颜色分布的方法,通过统计每个颜色通道的像素数量来构建。这种特征提取技术可以有效地区分不同颜色主题的图像。 纹理特征则是另一种重要的图像区分手段,它考虑了图像局部区域的像素模式和结构。不同的纹理分析方法,如Gabor滤波器、局部二值模式(LBP)等,可以揭示图像的纹理细节。 形状特征则关注图像中物体的轮廓和几何属性。形状描述子如边界点、霍夫变换、轮廓特征等可以帮助识别和匹配图像中的形状。 项目中,基于内容的图像检索是核心部分,通过实现一个模拟系统,使用VC++编程语言来处理和比较这些特征,以计算图像之间的相似度。通常,相似度计算会采用欧氏距离、余弦相似度或其他距离度量方法。 最后,通过这个系统,用户可以输入一个查询图像,系统将返回与查询图像在颜色、纹理和形状特征上最接近的图像集合,从而实现有效的图像检索。 这个基于VC++的图像识别项目提供了一个学习和实践图像处理和检索技术的平台,有助于理解图像特征提取、相似度计算以及如何利用编程工具实现这些概念。这对于进行课程设计或深入研究图像识别领域的学生来说是非常有价值的。
983 浏览量
第1章 数字图像与图像处理 1 1.1 数字图像相关概念 1 1.1.1 数字图像 1 1.1.2 图像处理 2 1.1.3  图像识别 2 1.1.4 图像理解 3 1.2 图像的获取、显示与表示 3 1.2.1 图像的获取 3 1.2.2 图像显示 4 1.2.3 图像表示 4 1.3 数字图像处理系统的基本组成结构 9 第2章 相关的图像处理技术 10 2.1  图像分割技术 10 2.1.1 阈值与图像分割 10 2.1.2 梯度与图像分割 11 2.1.3 边界提取与轮廓跟踪 11 2.1.4  Hough变换 12 2.1.5 区域增长 12 2.2 图像复原 12 2.2.1 数学模型 12 2.2.2 维纳滤波(Wiener Filtering) 13 2.3 图像的纹理分析技术 13 2.3.1 空间灰度层共现矩阵 14 2.3.2  纹理能量测量 16 2.3.3 纹理的结构分析方法和纹理梯度 18 2.3.4 纹理识别示例——云类自动识别 19 2.4 图像的形态学处理技术 20 2.4.1 基本概念 21 2.4.2 开运算和闭运算 22 2.4.3 击中、击不中、变换 (HMT-Hit Miss Transform) 23 2.4.4 边界和骨架(Boundary and Skeleton) 23 第 3章 指纹识别系统(上) 24 3.1 指纹识别的历史 24 3.2 指纹识别研究的现状 24 3.3 指纹识别系统的构成  25 3.3.1 指纹的录入 26 3.3.2 指纹图像增强 28 3.3.3 指纹识别的基本原理 29 3.3.4  系统问题 30 3.3.5 系统性能评估 31 3.3.6 一套指纹识别算法库的构成 32 3.4 指纹的粗分类与匹配 89 3.5  基于Matlab的指纹识别系统 92 3.5.1 主界面程序 93 3.5.2 指纹中心计算程序 115 3.5.3 计算有效区域 117 3.5.4 二维Gabor变换 118 3.5.5 归一化扇区 119 3.5.6 读取图像 120 3.5.7  旋转角度计算 121 第4章 指纹识别系统(下) 123 4.1 指纹图像的预处理 123 4.1.1 预处理概述  123 4.1.2 指纹质量评估 124 4.1.3 指纹图像分割 129 4.1.4 指纹图像增强 134 4.1.5  指纹图像二值化 135 4.1.6 指纹图像细化 136 4.1.7 相关预处理算法代码 139 4.2 指纹特征提取  177 4.2.1 指纹特征的表述 177 4.2.2 局部细节特征提取 180 4.2.3 特征提取算法代码 186 4.3  基于点模式的细节匹配 194 4.4 指纹识别的实际应用案例 204 4.4.1 指纹门禁系统 204 4.4.2 指纹考勤系统 205 4.5 指纹处理算法库测试程序 206 4.6 本章小结 218 第5章 数字水印技术 219 5.1  基本概念 219 5.1.1 水印技术的基本要求 219 5.1.2 数字水印算法基本思路 219 5.1.3 一些关键问题 220 5.2 水印应用现状分析 220 5.2.1 现有水印算法不适应版权保护 220 5.2.2 盲检测算法 222 5.2.3  盲检测算法的公证 222 5.2.4 数字水印系统的一般组成 223 5.3 基于DCT域的数字水印方案 223 5.3.1  离散余弦变换 223 5.3.2 Torus自同构映射 224 5.3.3 人眼视觉频率响应及DCT变换系数的选取 224 5.3.4  水印算法 226 5.4 基于扩频通信的水印算法 228 5.4.1 扩频通信原理 228 5.4.2 扩频通信在数字水印中的利用 229 5.4.3 加载强度的讨论 233 5.4.4 水印加载算法的实现 237 5.5 一个基于DCT域的实例  240 5.5.1 一些算法代码 240 5.5.2 加载水印 271 5.5.3 提取水印 275 5.5.4 水印算法评价 281 5.6 本章小结 294 第6章 条形码技术 295 6.1 常用的条码编码规则 295 6.1.1  条码的一般组成 295 6.1.2 条码的种类 296 6.1.3 EAN-13码的构造 296 6.2 一个简单的条形码打印系统 298 6.3 一维条形码的识别 312 6.3.1 硬件识别系统 312 6.3.2 预处理过程 312 6.3.3  译码过程 314 6.4 一维条形码识别系统实例 315 6.4.1 DIB.H位图存取头文件 316 6.4.2  DIB.CPP位图存取源程序 317 6.4.3 BARRECOG.H条码识别头文件 322 6.4.4 BARRECOG.CPP条码识别源程序 323 6.5 二维条形码介绍 337 6.5.1 PDF417符号的结构 338 6.5.2 簇及符号字符定义 338 6.5.3 层编码 339 6.5.4 模式结构 339 6.5.5 起始符和终止符 340 6.5.6  空白区 340 6.5.7 错误监测与纠正 340 6.6 二维条形码打印程序 340 6.6.1 PDF417LIB.H二维条形码库头文件 340 6.6.2 PDF417LIBIMP.H数据定义 342 6.6.3 PDF417LIB.C函数实现文件  353 6.6.4 PDF417.C主程序 377 6.7 本章小结 378 第7章 手势识别系统 379 7.1  立体测量 379 7.1.1 立体匹配法 379 7.1.2 立体视觉的原理 379 7.1.3 用立体视觉进行距离测量  381 7.2 用一台摄像头进行距离测量 382 7.2.1 摄像头正对前方 382 7.2.2 摄像头倾斜 383 7.2.3  一台摄像头测量距离 385 7.3 假想演奏系统的构成 387 7.3.1 系统概述 387 7.3.2 肤色提取 388 7.3.3  右手位置检测 390 7.3.4 摄像机的距离测量 391 7.3.5 音阶范围与音量范围 391 7.3.6 声音的表现方法 392 7.3.7 系统整体构成 393 7.4 程序代码 393 7.5 本章小结 432 第8章 印鉴鉴定系统 433 8.1 伪印鉴的制作及人工防伪技术 433 8.1.1 常用伪造印鉴的方法及其特征 433 8.1.2 真假印鉴印文的检验 435 8.2 印鉴图像的分离 435 8.2.1 封闭凸多边形图像提取的算法提出 436 8.2.2 封闭凸多边形图像的提取方法——种子扩散浮置实体算法 436 8.3 基于矩不变量的印鉴识别 439 8.4 基于Fourier描述符的印鉴识别方法 441 8.4.1 提取字符包络线 441 8.4.2 字符包络线的Fourier描述 442 8.5 基于边缘和模板匹配的印鉴识别 443 8.6 部分算法代码 446 8.6.1 背景去除(利用颜色) 446 8.6.2 基于矩不变量的代码 450 8.7 本章小结 455 第9章 光学字符识别技术(上) 456 9.1 概述 456 9.1.1 文字识别系统的构成 456 9.1.2 文字识别技术 457 9.1.3 印刷体汉字识别 459 9.1.4 存在的问题 461 9.2  预处理技术 461 9.2.1 二值化 462 9.2.2 版面分析 463 9.2.3 倾斜度校正 464 9.2.4  版面切分 467 9.2.5 行、字分割 467 9.2.6 细化和规范化 469 9.2.7 预处理算法源代码示例 470 9.3  特征提取 537 9.3.1 概述 538 9.3.2 边缘跟踪 538 9.3.3 笔画的分类 540 9.3.4 笔画识别前的噪声处理 541 9.3.5 笔画方向码合并处理及笔画识别 542 9.3.6 笔画间特征量的定义及识别 543 9.3.7  整字匹配的距离准则 544 9.3.8 一些统计特征 545 第10章 光学字符识别技术(下) 549 10.1 分类与识别 549 10.1.1 判别器的选择 549 10.1.2 决策树的基本概念 550 10.1.3 决策树设计 552 10.1.4  节点分类器设计 555 10.1.5 多方案组合识别器 558 10.1.6 代码示例 560 10.2 后处理 623 10.3  OCR程序示例 639 10.4 本章小结 640