AHP与BP神经网络结合的煤矿安全评价模型探究
166 浏览量
更新于2024-09-02
1
收藏 317KB PDF 举报
"基于AHP和BP神经网络的煤矿安全评价方法研究"
本文主要探讨了如何结合层次分析法(Analytic Hierarchy Process, AHP)和反向传播(Back Propagation, BP)神经网络来建立一种创新的煤矿安全评价模型。这种结合方法旨在解决我国煤矿安全管理中的实际问题,提高安全评价的准确性和实用性。
首先,层次分析法(AHP)是一种多准则决策分析工具,常用于处理复杂、多维度的决策问题。在煤矿安全评价中,AHP可以用来确定各个安全因素的相对重要性,通过比较和权重分配,将复杂的评价标准转化为可操作的层次结构。这一方法有助于量化和比较不同因素对整体安全状况的影响,确保评价过程的公正性和科学性。
其次,BP神经网络是一种广泛应用于模式识别和预测的人工神经网络模型,能够通过学习和调整权重来模拟人脑的学习过程。在煤矿安全评价中,BP神经网络可以处理非线性的关系,学习和适应历史数据,预测未来的安全状态。将AHP与BP神经网络结合,可以利用AHP得到的权重信息指导BP网络的学习,使网络更准确地反映各因素对安全的影响程度。
文章中,作者杨郑首先分析了现有的煤矿安全评价方法的优缺点,指出单纯依赖单一方法可能存在的局限性。然后,他提出了一种新的评价模型,该模型将AHP用于确定权重,然后将这些权重作为输入,馈送给BP神经网络进行训练和预测。通过实证研究,该模型的适用性和准确性得到了验证,表明这种方法能有效评估煤矿的安全状态,并对未来可能的风险做出预警。
近年来,尽管我国煤矿安全水平有所提高,但安全事故仍然频发,因此,寻找更有效的安全评价方法至关重要。本文的研究成果为煤矿安全评价提供了一种新的思路,对于预防和减少煤矿事故、提高安全生产管理水平具有重要的理论和实践意义。该方法不仅适用于煤矿行业,其原理和方法也可应用于其他需要复杂多因素评价的领域,如化工、建筑等高风险行业。
169 浏览量
点击了解资源详情
点击了解资源详情
167 浏览量
点击了解资源详情
2025-01-07 上传
2025-01-07 上传
2025-01-07 上传
weixin_38617436
- 粉丝: 12
- 资源: 945
最新资源
- DemoJenkins
- 实现按钮颜色的各种渐变效果
- FtpFile:局域网文件传输系统
- 泰州别墅装修图
- win7 安装.net framework 4.5.2报错:“根据当前系统时钟或签名文件中的时间戳验证时要求的证书不在有效期内
- AirBnB_clone
- 3D旋转特效
- weed-client:Seaweed文件系统的Java客户端
- 随机信号研究型习题3(通信接收机输出概率特性实验研究)
- The CFML Community Platform-开源
- 加载网页进度条
- 中式连锁快餐公司创业经营案例汇编
- SymbolFactory_v3.0.rar
- dhcpdump2-开源
- 旅行
- OnlineBook模板.zip