最优化方法:DFP算法与线性规划解析
需积分: 50 168 浏览量
更新于2024-07-11
收藏 14.2MB PPT 举报
"最优化方法-研究生课程讲解,包含DFP算法的性质,最优化理论与应用,学习方法,参考书籍及实例"
最优化方法是研究生阶段的重要课程,它探讨如何在给定条件下找到最佳决策,广泛应用于信息工程、经济、管理、交通、国防和科学研究等多个领域。课程内容涵盖经典与现代的最优化方法,如线性规划、非线性规划、整数规划、动态规划,以及随机规划、模糊规划等现代方法。
DFP算法,全称为Davidon-Fletcher-Powell算法,是一种用于无约束最优化的迭代算法。在处理正定二次函数时,DFP算法展现出以下特性:
1. 共轭方向法:DFP算法每次迭代选取的搜索方向是Hessian矩阵(Hn)的逆(G-1)与梯度的乘积,这确保了方向的共轭性质,有助于快速收敛。
2. 最多n次收敛:对于正定二次函数,DFP算法最多经过n次迭代即可找到全局最小值。这里的n是变量的数量。
3. 比拟Newton方程:DFP算法满足一个比Newton方法更强的条件,即在每一步迭代中,迭代点处的Hessian矩阵近似满足Newton方程,即Hkyi = si,其中ki表示第i步的迭代点,yi是相应的步长,si是梯度。
对于一般函数,DFP算法具有以下性质:
1. 正定矩阵保持:即使在非二次函数情况下,DFP算法产生的Hk矩阵也保持正定,保证了算法的下降性质,即每次迭代都能降低目标函数的值。
2. 超线性收敛:DFP算法在某些条件下能实现超线性收敛,即随着迭代次数增加,函数值的下降速度越来越快。
3. 对于凸函数的整体收敛:如果目标函数是凸的,DFP算法将确保全局收敛,即无论初始点在哪里,算法都将收敛到全局最小值。
4. 计算复杂性:每次迭代大约需要3n^2 + O(n)次乘除运算,不包括一维搜索的额外计算。
学习最优化方法需要认真听讲,课后复习并完成练习,同时广泛阅读参考书,将理论知识与实际问题相结合,通过数学建模和算法解决实际问题。推荐的参考书包括解可新、韩健、林友联的《最优化方法》以及蒋金山、何春雄、潘少华等人的著作,它们提供了深入理解最优化思想、算法和应用的资源。
在实际应用中,如例1.1.1中的运输问题,最优化方法可以帮助设计运输方案,以最低的运费满足各个城市的需求。这类问题可以通过线性规划或其他优化算法来求解,体现出最优化方法在解决实际经济问题中的强大能力。
点击了解资源详情
点击了解资源详情
2013-09-06 上传
2018-09-27 上传
2021-10-12 上传
2021-10-08 上传
顾阑
- 粉丝: 20
- 资源: 2万+
最新资源
- 红色绚丽花纹背景下载PPT模板
- diranolaleye/CSSSim-1.0:用于MATLAB的协作频谱感测模拟器-matlab开发
- Angular9-SpringBoot-CRUD教程
- Calcalist Snapshot-crx插件
- 学佛打坐锻炼网站模板是一款html5模板,适合瑜伽休闲锻炼网站模板下载。.zip
- El Pais Sin Registro-crx插件
- Cross-correlation:此代码找到 2 个离散序列的互相关-matlab开发
- 节日促销下载PPT模板
- 装饰装修工程施工组织设计-某综合楼室外幕墙施工组织设计方案
- bing-o:一个使用WebSockets的基于点击的小型在线游戏。 https
- 营养计算器
- goit-react-hw-05-电话簿
- 休闲时刻户外网站模板是一款大气简洁风格的HTML5户外网页模板。.zip
- 金色花纹背景艺术PowerPoint下载PPT模板
- php-ps-info:简单的脚本,可让您测试当前环境是否满足 PrestaShop 的系统要求,并提供改进建议
- freebsd-ports-testing:使用自托管的Jenkins基础结构测试我的FreeBSD端口提交