自适应蝙蝠算法解决货车与拖车路径优化问题

0 下载量 141 浏览量 更新于2024-07-15 收藏 665KB PDF 举报
本文是一篇研究论文,标题为《自适应蝙蝠算法应用于卡车和拖车路线规划》(A Self-Adaptive Bat Algorithm for the Truck and Trailer Routing Problem),作者包括Chao Wang、Shengchuan Zhou、Yang Gao和Chao Liu。该研究发表在《工程计算》(Engineering Computations)杂志上,具体刊载于2018年第35卷第1期,页码为108-135。论文的DOI是<https://doi.org/10.1108/EC-11-2016-0408>,并且自2018年以来已经被下载了10次。 研究背景中提到,卡车和拖车路线规划问题(CTRP)是物流管理和运输优化中的一个重要课题,它涉及到如何有效地分配卡车及其拖车,以满足货物的交付需求,同时考虑到运输成本、时间效率和资源利用率等多方面因素。传统的方法可能在解决这类复杂问题时遇到挑战,因此,这篇论文提出了一种自适应蝙蝠算法,旨在通过模仿自然界中蝙蝠群体的觅食行为,寻求最优解。 蝙蝠算法是一种生物启发式优化算法,其核心思想是模拟蝙蝠的超声回声定位寻找食物。在自适应版本中,研究人员可能对算法的参数进行了动态调整,如脉冲频率、声音发射概率以及飞行距离等,以提高算法在处理CTRP问题时的收敛速度和解决方案质量。他们可能使用了种群搜索策略,允许个体在搜索空间中进行合作和竞争,以找到全局最优或近似最优的路线配置。 论文引用了57篇其他文献,表明作者在研究过程中参考了相关的理论基础和先前的研究成果,以提升算法的创新性和可靠性。对于希望撰写类似主题文章的作者,他们提供了 Emerald for Authors 的服务信息,指出可以通过访问<www.emeraldinsight.com/authors>获取关于投稿选择和写作指导的更多详情。 这篇文章主要关注的是将自适应蝙蝠算法应用于具有实际意义的物流问题——卡车和拖车路线规划,通过改进算法策略来寻找更高效和经济的运输方案。这不仅为物流行业的实践者提供了新的优化工具,也为优化算法设计者展示了如何将生物启发式方法应用于复杂问题求解的实际应用案例。