SPSS统计图表解析:常用图表操作与界面介绍

需积分: 43 42 下载量 134 浏览量 更新于2024-08-10 收藏 2.13MB PDF 举报
"常用统计图-《tcp-ip illustrated volume 2 the implemention》" 在深入探讨统计图在SPSS中的应用之前,我们先要理解统计图的重要性。统计图是数据分析的关键工具,它们能够清晰地呈现复杂的数据关系,帮助研究人员快速识别模式、趋势和异常值。在TCP/IP实现的上下文中,虽然主要讨论的是网络协议,但数据可视化同样在网络监控和性能分析中发挥着重要作用。 SPSS(Statistical Product and Service Solutions)是一款强大的统计分析软件,其在学术界和业界都广受欢迎。SPSS 10.0版本引入了新的绘图功能,包括交互式统计图和统计地图,提升了数据分析的效率和视觉效果。其中,交互式统计图允许用户根据需要动态调整图形参数,而统计地图则支持地理数据的可视化,这对于地域相关的数据分析尤为有用。 在SPSS中,统计图主要集中在`graph`菜单下,包括了多种常见的图形类型,如条形图、散点图、线图、直方图、饼图、面积图、箱式图、正态Q-Q图、正态P-P图、质量控制图、Pareto图、自回归曲线图、高低图、交互相关图、序列图、频谱图和误差线图。这些图形各有其特定用途,例如,条形图用于比较类别间的数值,散点图用于展示两个变量之间的关系,而箱式图则能揭示数据的四分位数信息。 在实际操作中,例如创建条形图,用户可以通过`graph`菜单下的相应选项进入绘图对话框,设置数据源、颜色、标签等参数。条形图的通用界面具有一定的共性,用户可以以此为基础,适应其他类型的图形制作。SPSS的设计使得即使没有深厚的统计背景,用户也能通过直观的菜单和对话框进行数据分析和可视化。 对于时间序列分析,像自回归曲线图、高低图和序列图特别有用,它们能够帮助识别时间上的趋势和周期性变化。而像误差线图则适用于展示测量误差对数据点的影响。 SPSS提供了批处理模式、完全窗口菜单运行模式和程序运行模式三种运行方式,以满足不同用户的需求。批处理模式适合自动化处理大量数据,而完全窗口菜单运行模式则简化了操作,适合初学者。程序运行模式允许用户通过语法(Syntax)进行更精确的控制,适合熟悉SPSS语法的高级用户。 在SPSS启动后,用户可以通过选择相应的菜单和对话框进行数据导入、预处理、分析和绘图。当完成分析工作后,用户可以通过标准的Windows操作关闭程序,比如点击文件菜单的退出选项或者使用系统任务栏的关闭按钮。 SPSS以其丰富的统计图形功能,成为数据分析和研究的强大工具。对于TCP/IP实现的研究者,掌握如何利用SPSS进行数据可视化和统计分析,无疑能提升他们分析网络性能和问题诊断的能力。

翻译This SiO2 shell is a key component in the mechanism for reversible actuation, as illustrated by finite element analysis (FEA) in Fig. 1C. An increase in temperature transforms the SMA (nitinol) from the martensitic to the austenitic phase, causing the 3D structure to flatten into a 2D shape. The responses of the SMA elements at the joints act as driving forces to deform the PI skeleton. This process also elastically deforms the SiO2 shell, resulting in a counter force that limits the magnitude of the deformation. The change in shape ceases when the forces from the shell balance those from the joints (right frame in Fig. 1C). Upon a reduction in temperature, the SMA changes from the austenitic back to the martensitic phase, thereby reducing the force produced by the SMA at the joints to zero. The elastic forces associated with the shell then push the entire system back to the original 3D geometry (left frame in Fig. 1C). Figure S3A simulates the moments generated by the SMA and the SiO2 shell. In the FEA model, the SiO2 shell appears on both the outer and inner surfaces of the 3D robot, consistent with experiments (fig. S3B). Although a single layer of the SiO2 shell at the outer or inner surface can also provide restoring force, the double-layer shell structure follows naturally from the conformal deposition process. This actuation scheme allows for reversible shape transformations using a one-way shape memory material. Without the shell, the structure only supports a single change in shape, from 3D to 2D, as illustrated in fig. S3C. Figure 1D shows optical images of a freestanding 3D peekytoe crab on the edge of a coin, highlighting the preserved 3D geometry enabled by the SiO2 shell after release from the elastomer substrate. Other 3D structures in geometries that resemble baskets, circular helices, and double-floor helices also exhibit high shape storage ratios (>85%) after cycles of heating and cooling (fig. S4). This ratio (s) is defined as s = 1 − |L1 − L0|/L0 × 100%, where L0 and L1 are the distances between the bonding sites at both ends at the initial stage and subsequent stages, respectively

2023-06-13 上传