史上最全积分公式大全:Table Of Integrals, Series And Products (7Ed)

需积分: 12 1 下载量 165 浏览量 更新于2024-07-20 收藏 7.32MB PDF 举报
"《Table Of Integrals, Series And Products (7Ed)》是第七版的一本全面涵盖积分、级数和产品计算的数学参考书,由I.S. Gradshteyn和I.M. Ryzhik撰写,并由Alan Jeffrey和Daniel Zwillinger编辑。这本书在数学界具有很高的权威性,提供了丰富的积分公式,同时也包含了导数和级数等其他重要的数学概念。" 在数学领域,积分计算是解决许多复杂问题的关键工具,它涉及物理、工程、经济学等多个学科。这本书详尽地列举了各种类型的积分公式,包括不定积分、定积分、二重积分、三重积分以及特殊函数的积分,帮助读者快速找到解决特定积分问题的方法。不定积分是基本的积分形式,通常用于寻找原函数或反导数;定积分则用于计算面积、体积和其他物理量;多重积分在处理多变量函数时尤为重要,如在物理中的质心计算或在工程中的电磁场分析。 级数部分涵盖了无穷级数的求和方法,包括几何级数、调和级数、泰勒级数和傅里叶级数等。这些级数在微积分、函数展开和信号处理等领域有广泛应用。泰勒级数允许我们将复杂函数近似为多项式,而傅里叶级数则是将周期性函数分解为简单的正弦和余弦函数组合。 此外,书中可能还涉及特殊函数,如贝塞尔函数、伽马函数和欧拉函数等,这些函数在物理和工程问题中扮演着重要角色。对于每个公式,通常会附带证明或解释其推导过程,以及如何正确应用。 作为一本权威参考书,本书对于学生、教师和研究人员来说是不可或缺的工具,它能帮助他们在面对复杂的数学问题时找到正确的解决方案,提高解决问题的效率。同时,由于版权保护,未经许可,不得复制或以任何形式传播该书内容。 《Table Of Integrals, Series And Products (7Ed)》是一本全面、深入的数学工具书,对于那些需要频繁使用积分公式和级数计算的专业人士来说,它是一个宝贵的资源。

For macroscopically anisotropic media in which the variations in the phase stiffness tensor are small, formal solutions to the boundary-value problem have been developed in the form of perturbation series (Dederichs and Zeller, 1973; Gubernatis and Krumhansl, 1975 ; Willis, 1981). Due to the nature of the integral operator, one must contend with conditionally convergent integrals. One approach to this problem is to carry out a “renormalization” procedure which amounts to identifying physically what the conditionally convergent terms ought to contribute and replacing them by convergent terms that make this contribution (McCoy, 1979). For the special case of macroscopically isotropic media, the first few terms of this perturbation expansion have been explicitly given in terms of certain statistical correlation functions for both three-dimensional media (Beran and Molyneux, 1966 ; Milton and Phan-Thien, 1982) and two-dimensional media (Silnutzer, 1972 ; Milton, 1982). A drawback of all of these classical perturbation expansions is that they are only valid for media in which the moduli of the phases are nearly the same, albeit applicable for arbitrary volume fractions. In this paper we develop new, exact perturbation expansions for the effective stiffness tensor of macroscopically anisotropic composite media consisting of two isotropic phases by introducing an integral equation for the so-called “cavity” strain field. The expansions are not formal but rather the nth-order tensor coefficients are given explicitly in terms of integrals over products of certain tensor fields and a determinant involving n-point statistical correlation functions that render the integrals absolutely convergent in the infinite-volume limit. Thus, no renormalization analysis is required because the procedure used to solve the integral equation systematically leads to absolutely convergent integrals. Another useful feature of the expansions is that they converge rapidly for a class of dispersions for all volume fractions, even when the phase moduli differ significantly.

2023-06-02 上传