基于Ultra96和DPU的人脸检测应用:SEU-Xilinx暑期学校项目
需积分: 0 131 浏览量
更新于2024-08-04
收藏 2.23MB PDF 举报
"2019年SEU-Xilinx国际暑期学校团队项目设计文档_第19组1"
这篇文档是2019年东南大学(SEU)与Xilinx合作举办的国际暑期学校的一个项目设计报告,由刘泽世、侯兴中和石正源三位同学共同完成。项目主题为“基于Ultra96和DPU的人脸检测应用”,旨在利用FPGA(Field-Programmable Gate Array)的灵活性和DPU(Deep Processing Unit)的高效能,实现人工智能在人脸识别领域的应用。
项目分工明确,组长刘泽世负责应用开发和性能测试,侯兴中专注于深度学习模型的压缩和定点,以及Vivado硬件平台的搭建,石正源则负责PetaLinux系统的生成,包括镜像和Sysroot环境的配置。
设计概述提到,随着FPGA技术的进步,其在人工智能领域中的应用日益成熟,特别是在DPU的帮助下,FPGA可以支持高效的人工智能运算。由于人工智能在多个行业中的广泛应用,FPGA+AI的结合成为趋势。本项目通过DPUIntegrationLab,学习了如何在Ultra96开发板上实现人脸检测功能,涵盖了Vivado和PetaLinux的使用,以及DPU对Caffe模型的压缩定点操作。最终,团队成功生成可在FPGA上运行的人脸检测程序,以实现高实时性的应用。
实现的人脸检测功能具有高度的可移植性,可以被集成到各种系统,如考勤系统、面部支付系统等。此外,通过更换深度学习模型,可以扩展到其他应用,例如车辆识别,这在监控或自动驾驶汽车中都有潜在价值。项目中使用的设备包括显示器、Ultra96开发板、摄像头和SD卡。
这个项目的详细设计部分(未完全提供)很可能包含了DPU的硬件平台搭建步骤,软件开发流程,模型压缩的具体方法,以及在 Ultra96 上部署和验证的过程。这部分内容会深入探讨如何将深度学习模型转化为能够在FPGA硬件上运行的代码,以及如何优化性能以满足实时性需求。
这个项目展示了FPGA和DPU在实现人工智能应用中的潜力,同时也体现了团队成员在深度学习、FPGA设计、嵌入式系统等方面的综合技能。
2022-08-04 上传
2022-08-04 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-09-23 上传
点击了解资源详情
2022-08-04 上传
2022-08-04 上传
优游的鱼
- 粉丝: 856
- 资源: 316
最新资源
- Angular程序高效加载与展示海量Excel数据技巧
- Argos客户端开发流程及Vue配置指南
- 基于源码的PHP Webshell审查工具介绍
- Mina任务部署Rpush教程与实践指南
- 密歇根大学主题新标签页壁纸与多功能扩展
- Golang编程入门:基础代码学习教程
- Aplysia吸引子分析MATLAB代码套件解读
- 程序性竞争问题解决实践指南
- lyra: Rust语言实现的特征提取POC功能
- Chrome扩展:NBA全明星新标签壁纸
- 探索通用Lisp用户空间文件系统clufs_0.7
- dheap: Haxe实现的高效D-ary堆算法
- 利用BladeRF实现简易VNA频率响应分析工具
- 深度解析Amazon SQS在C#中的应用实践
- 正义联盟计划管理系统:udemy-heroes-demo-09
- JavaScript语法jsonpointer替代实现介绍