隐式开曲面图像去噪:变分模型与Split Bregman算法

需积分: 9 0 下载量 63 浏览量 更新于2024-08-08 收藏 2.27MB PDF 举报
"这篇文章主要探讨了在隐式开曲面上图像噪声去除的变分模型以及Split Bregman算法的应用。作者通过使用符号距离函数的零水平集与特征函数的交集来表示隐式开曲面,并引入内蕴梯度和内蕴散度的概念,构建了一个非线性扩散变分模型,旨在解决图像去噪问题。为了优化求解过程,他们设计了一种Split Bregman算法,该算法通过引入辅助变量和Bregman迭代参数,简化了计算步骤,提高了计算效率。文章通过解析形式的近似广义软阈值公式求解梯度降方程,实现了高效去噪。通过多个数值实验,验证了所提模型和算法在图像去噪方面的有效性和优越性。关键词包括图像去噪、隐式开曲面、变分模型、Split Bregman算法和水平集方法。" 这篇论文详细阐述了隐式开曲面上图像处理的方法,尤其是针对噪声去除的技术。传统的图像处理往往集中在二维平面上,而曲面上的图像处理则需要考虑图像特征与曲面的关联性。文章引用了2001年Bertalmio等人关于隐式闭曲面的工作,并在此基础上扩展到开曲面。通过符号距离函数的零水平集与特征函数的交集定义隐式开曲面,然后利用内蕴梯度和内蕴散度的理论,建立了一个非线性的扩散变分模型,这一模型专门用于去除开曲面上的图像噪声。 为了解决直接变分得到的梯度降方程计算复杂、效率低的问题,作者采用了Split Bregman算法。Split Bregman算法是一种优化策略,通过引入辅助变量和Bregman迭代参数,将复杂问题分解为更简单的子问题,从而提高了求解速度和效率。论文还介绍了如何求解导出的简单梯度降方程和解析形式的近似广义软阈值公式,这些公式有助于进一步简化实际操作。 最后,作者通过一系列数值实验,验证了他们提出的变分模型和Split Bregman算法在实际应用中的去噪效果,证明了这种方法的有效性和在处理开曲面上图像噪声时的优势。这为曲面上的图像处理提供了一种新的、高效的解决方案,尤其对于那些需要在复杂几何结构上进行图像分析和处理的应用具有重要的理论和实践价值。