3D图像处理:自适应矢量量化分割方法与应用
161 浏览量
更新于2024-08-28
收藏 3.62MB PDF 举报
"第35卷第10期的《光学学报》在2015年10月发布了一篇由德爱玲和郭成安共同撰写的论文——"基于矢量量化的三维图像自适应分割方法及其应用"。这篇研究针对当前3D图像分割技术的不足,提出了一种新的、能充分利用空间信息的3D图像分割算法。传统的图像分割方法主要集中在二维图像处理,而3D图像的分割领域仍有待深入。
该方法首先通过层间插值来增强3D图像的空间细节,接着对图像进行空间子块的边缘与非边缘模式分类。对于非边缘模式的子块,研究人员应用了矢量量化技术进行分割。这里,他们创新性地设计了一种最优码本求取方法,使分割的数目能够自适应地调整,以适应图像的复杂性。在完成非边缘模式子块的分割后,再依据这些子块的结果对边缘模式子块进行逐点检测和划分,确保了分割的精确性。
为了验证这种方法的有效性,作者们使用了IBSR(Image-Based Shape Representation)医学图像库中的仿真人脑数据和实际的人脑核磁共振成像(MRI)样本进行了实验。实验结果表明,该方法能够有效地进行3D图像分割,并从中获取到有价值的医学信息,比如同一病患在不同时期的MRI数据中病灶部位的体积变化,这对于临床医学诊断和疾病追踪具有重要意义。
此外,该论文的关键词包括自适应光学、图像处理、三维图像处理、体数据分割、矢量量化以及三维可视化,涵盖了从基础的图像处理技术到高级的3D图像分析。其中国图分类号为TN911.73,文献标识码为A,doi:10.3788/AOS201535.1001002,这为后续的研究者提供了查找和引用的途径。
这项工作为3D图像分割领域带来了新的思路,通过矢量量化和自适应策略,实现了对复杂3D图像的精确分割,对于医学成像分析和临床决策支持具有显著价值。"
445 浏览量
2010-12-12 上传
385 浏览量
2009-12-22 上传
2010-05-09 上传
119 浏览量
点击了解资源详情
点击了解资源详情
点击了解资源详情
weixin_38672840
- 粉丝: 9
- 资源: 893
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍