人人网的社会化推荐算法实践:从好友推荐到圈子检测

"社会化推荐算法在人人网的应用实践"
在本次讲座中,人人网的张叶银分享了社会化推荐算法在人人网的实际应用。推荐系统是互联网服务中的一个重要组成部分,其目标是向用户推荐他们可能感兴趣的内容,如好友、商品、文档和广告。这种技术在各大互联网巨头如Amazon、Netflix、Google、Facebook和Youtube等均有广泛应用。
推荐算法主要分为以下几类:
1. 协同过滤:协同过滤是最常见的推荐方法,分为基于用户(User-based)和基于物品(Item-based)两种。用户之间的相似度或物品之间的相似度被用来预测用户对未评分物品的喜好。
2. 内容过滤:这种方法基于用户过去的行为和内容的属性来推荐,比如通过分析用户的浏览历史和内容的元数据。
3. 社会网络:利用用户在社交网络中的关系,如共同好友、互动频率和兴趣爱好等进行推荐。
推荐系统的效果通常通过几个关键指标评估:
- 准确度:推荐的正确程度。
- 覆盖率:推荐系统能覆盖的物品或用户比例。
- 多样性:推荐结果的多样性和不重复性。
- 新颖性:推荐的新奇程度,是否包含用户未曾接触过的信息。
在人人网的社会化推荐中,好友推荐是一个重要应用场景。好友推荐的关键在于计算用户间的亲密度,这包括共同好友数目、个人资料相似度、用户互动频度以及用户的兴趣。此外,二度好友的概念也被引入,即推荐用户可能认识的人,如他们的朋友的朋友。
为了识别这些强联系和弱联系,社区检测技术被运用,通过分析图的连通性和聚类来发现用户群体。强联系(Strong Ties)通常指的是紧密的社会关系,而弱联系(Weak Ties)则指相对较松散的关系。这两种关系在推荐、隐私控制和个性化信息推送等方面都有其独特的价值。
对于弱联系的处理,可以采用无监督学习方法,如扁平聚类(flat clustering)和层次聚类(hierarchical clustering)。层次聚类是一种自底向上的方法,它通过合并最近的中心点,直到只剩下一个聚类。在这一过程中,计算每对中心点的相似性,找到最近的两对并合并,重复此过程直到满足停止条件。
总结来说,社会化推荐算法在人人网的应用实践中,结合了用户行为、社交网络结构以及各种聚类方法,以实现更精准、多样和个性化的推荐服务,同时优化用户体验,增强用户在平台的互动与粘性。
1105 浏览量
109 浏览量
116 浏览量
124 浏览量
144 浏览量
2025-03-13 上传

xiaolzh
- 粉丝: 15
最新资源
- Swift实现渐变圆环动画的自定义与应用
- Android绘制日历教程与源码解析
- UCLA LONI管道集成Globus插件开发指南
- 81军事网触屏版自适应HTML5手机网站模板下载
- Bugzilla4.1.2+ActivePerl完整安装包
- Symfony SonataNewsBundle:3.x版本深度解析
- PB11分布式开发简明教程指南
- 掌握SVN代码管理器,提升开发效率与版本控制
- 解决VS2010中ActiveX控件未注册的4个关键ocx文件
- 斯特里尔·梅迪卡尔开发数据跟踪Android应用
- STM32直流无刷电机控制实例源码剖析
- 海豚系统模板:高效日内交易指南
- Symfony CMF路由自动化:routing-auto-bundle的介绍与使用
- 实现仿百度下拉列表框的源码解析
- Tomcat 9.0.4版本特性解析及运行环境介绍
- 冒泡排序小程序:VC6.0实现代码解析