MATLAB仿真源码:多智能体协同控制与事件触发机制

版权申诉
5星 · 超过95%的资源 15 下载量 162 浏览量 更新于2024-11-12 8 收藏 45.84MB ZIP 举报
资源摘要信息:"该资源为一个多智能体协同控制的MATLAB仿真源码压缩包,特别关注事件触发机制在智能体间协同工作中的应用。事件触发机制是一种同步技术,它允许系统中的智能体根据预设的条件或事件来触发同步或通信,而不是按照固定的时间间隔进行。这种机制可以有效减少不必要的信息交换,从而降低通信负担和能量消耗,提高系统的整体效率。 在这份源码中,可以预期以下几点关键知识点和应用领域: 1. MATLAB仿真环境的搭建:MATLAB是一个高性能的数值计算环境和第四代编程语言,它广泛应用于工程、科学计算等领域。仿真环境的搭建涉及到MATLAB软件的安装、配置以及仿真模型的构建。 2. 协同控制原理:协同控制是多智能体系统中的一个重要概念,它涉及到智能体间如何进行有效的信息交换和任务协调。协同控制的目的是通过智能体间的合作完成比单一智能体更复杂的任务。 3. 事件触发机制:事件触发机制是一种不同于时间触发的控制机制,它按照系统状态的变化来触发控制动作,而不是按照预设的时间点。这种机制可以减少控制系统的通信次数和处理延迟。 4. 多智能体系统:该仿真源码关注的是如何控制和管理多个智能体,使其能够作为一个整体协同工作。多智能体系统是由多个自主的智能体组成的系统,它们可以相互交流、合作完成复杂任务。 5. 仿真模型:该资源中应包含了针对特定场景的仿真模型,比如在制造业、交通控制、无人机编队飞行、机器人团队协作等领域的仿真模型。 6. 编程技巧和算法实现:源码应展示如何在MATLAB环境下编程实现协同控制算法,可能涉及到算法的选择、调试、优化等过程。 7. 通信网络设计:在多智能体系统中,智能体之间需要通过通信网络交换信息。该仿真源码可能会涉及到无线通信网络的设计和管理。 8. 系统性能评估:最后,该源码应该还包括如何评估整个系统性能的方法,例如计算效率、任务完成率、通信负担等指标。 综上所述,这个压缩包文件包含了丰富的工程技术知识,特别是针对多智能体系统中协同控制和事件触发仿真的深入研究。通过学习和使用这份资源,研究者和工程师可以更深入地理解多智能体系统的设计和实现,以及如何利用MATLAB进行高效仿真实验。"

帮我分析这段abap代码:FUNCTION zhs_jcy_dmt001. *"---------------------------------------------------------------------- *"*"本地接口: *" IMPORTING *" VALUE(IM_MTART) TYPE ZHS_RANGE_MTART OPTIONAL *" VALUE(IM_MATKL) TYPE ZHS_RANGE_MATKL OPTIONAL *" VALUE(IM_SENDMSG) TYPE FLAG DEFAULT SPACE *" TABLES *" ET_DATA STRUCTURE ZHS_JCY_DTM001 OPTIONAL *"---------------------------------------------------------------------- INCLUDE zgen_bc_x_fmlog_first_phase. WAIT UP TO 3 SECONDS. INCLUDE zgen_bc_x_fmlog_last_phase. EXIT. DATA: lo_jcy TYPE REF TO zcl_hans_jcy_handle, lt_dtm001 TYPE TABLE OF zhs_jcy_dtm001, ls_dtm001 TYPE zhs_jcy_dtm001, lt_dtmc01 TYPE TABLE OF zhs_jcy_dmt01, ls_dtmc01 TYPE zhs_jcy_dmt01. "实例化类 CREATE OBJECT lo_jcy EXPORTING im_hs_tcode = gc_hs_tcode_dtm001. "判断监控点是否启用 IF lo_jcy->is_active( ) EQ zcl_hans_jcy_handle=>no. RETURN. ENDIF. PERFORM frm_get_dmtc01. REFRESH:lt_dtm001. SELECT a~mtart a~matnr b~maktx a~matkl INTO CORRESPONDING FIELDS OF TABLE lt_dtm001 FROM mara AS a INNER JOIN makt AS b ON a~matnr EQ b~matnr AND b~spras EQ sy-langu WHERE mtart IN im_mtart AND matkl IN im_matkl. DATA: l_char TYPE c, l_num TYPE n, l_len TYPE i, l_cnt TYPE i. LOOP AT lt_dtm001 INTO ls_dtm001. CLEAR l_cnt. LOOP AT gt_dtmc01 INTO gs_dtmc01 WHERE mtart EQ ls_dtm001-mtart AND zmatcode NE space. CLEAR:l_char,l_len. CONDENSE: gs_dtmc01-zmatcode. l_len = strlen( gs_dtmc01-zmatcode ). DO l_len TIMES. l_char = gs_dtmc01-zmatcode+l_cnt(1). ENDDO. ENDLOOP. ENDLOOP. CHECK lt_dtm001[] IS NOT INITIAL. ls_dtm001-statm = gc_mat_statm_k. MODIFY lt_dtm001 FROM ls_dtm001 TRANSPORTING statm WHERE statm NE gc_mat_statm_k. et_data[] = lt_dtm001[]. FREE:lt_dtm001. CHECK im_sendmsg EQ 'X'. REFRESH:gt_zhs_jcy_ab_data. CLEAR: gs_return. LOOP AT et_data INTO ls_dtm001. "设置WS参数值 CLEAR gs_zhs_jcy_ab_data. * KEY值 gs_zhs_jcy_ab_data-key03 = ls_dtm001-statm. gs_zhs_jcy_ab_data-key02 = ls_dtm001-mtart. gs_zhs_jcy_ab_data-key01 = ls_dtm001-matnr. "栏位值 gs_zhs_jcy_ab_data-field01 = ls_dtm001-mtart. gs_zhs_jcy_ab_data-field02 = ls_dtm001-matnr. gs_zhs_jcy_ab_data-field03 = ls_dtm001-maktx. gs_zhs_jcy_ab_data-field04 = ls_dtm001-zmatcode. gs_zhs_jcy_ab_data-field05 = ls_dtm001-matkl. gs_zhs_jcy_ab_data-field06 = ls_dtm001-statm. APPEND gs_zhs_jcy_ab_data TO gt_zhs_jcy_ab_data. ENDLOOP. CALL METHOD lo_jcy->call_ws_monitor EXPORTING im_zhs_jcy_ab_data = gt_zhs_jcy_ab_data IMPORTING ex_return = gs_return. FREE lo_jcy. ENDFUNCTION.

2023-07-12 上传

select c.area_name,c.mon,c.count,ifnull(c1.count1,0),ifnull(c1.count1,0)/count * 100 from ( select a.area_name,MONTH(pb.wlpb_create_time) mon,count(pb.id) count from bc_company_info b inner join ( select b.id from wk_ledger_produce_gather g left join bc_company_info b on b.id =g.bci_id where g.wlpg_year =2022 group by b.id HAVING sum(g.wlpg_total_produce) >=30 UNION select b.id from wk_plan_info p left join wk_plan_danger d on d.wpi_id = p.id left join bc_company_info b on b.id = p.bci_id where p.wpi_year = 2022 group by b.id HAVING sum(d.wpd_this_produce) >30) b1 on b1.id = b.id left join wk_ledger_produce_bill pb on pb.bci_id = b.id left join sys_area a on a.id = b.bci_city where pb.wlpb_create_time >'2023-01-01 00:00:00' group by b.bci_city,MONTH(pb.wlpb_create_time) ) c left join ( select a.area_name,MONTH(pb.wlpb_create_time) mon,count(pb.id) count1 from bc_company_info b inner join ( select b.id from wk_ledger_produce_gather g left join bc_company_info b on b.id = g.bci_id where g.wlpg_year =2022 group by b.id HAVING sum(g.wlpg_total_produce) >=30 UNION select b.id from wk_plan_info p left join wk_plan_danger d on d.wpi_id = p.id left join bc_company_info b on b.id = p.bci_id where p.wpi_year = 2022 group by b.id HAVING sum(d.wpd_this_produce) >30) b1 on b1.id = b.id left join wk_ledger_produce_bill pb on pb.bci_id = b.id left join sys_area a on a.id = b.bci_city where pb.wldb_end_from != 1 and pb.wlpb_create_time >'2023-01-01 00:00:00' group by b.bci_city,MONTH(pb.wlpb_create_time)) c1 on c.area_name = c1.area_name and c.mon = c1.mon 这段SQL怎么优化

2023-06-09 上传

pt_x_bc_var = Variable(torch.from_numpy(x_bc_var).float(), requires_grad=False) pt_x_in_pos_one = Variable(torch.from_numpy(x_in_pos_one).float(), requires_grad=False) pt_x_in_zeros = Variable(torch.from_numpy(x_in_zeros).float(), requires_grad=False) pt_t_in_var = Variable(torch.from_numpy(t_in_var).float(), requires_grad=False) pt_u_in_zeros = Variable(torch.from_numpy(u_in_zeros).float(), requires_grad=False) # 求边界条件的损失 net_bc_right = net(torch.cat([pt_x_in_zeros, pt_t_in_var], 1)) # u(0,t)的输出 mse_u_2 = mse_cost_function(net_bc_right, pt_u_in_zeros) # e = 0-u(0,t) 公式(2) net_bc_left = net(torch.cat([pt_x_in_pos_one, pt_t_in_var], 1)) # u(1,t)的输出 mse_u_3 = mse_cost_function(net_bc_left, pt_u_in_zeros) x_0 = torch.cat([pt_x_in_zeros, pt_t_in_var], 1) x_1 = torch.cat([pt_x_in_pos_one, pt_t_in_var], 1) pt_x_0 = x_0.detach().requires_grad_(True) pt_x_1 = x_1.detach().requires_grad_(True) net_bc_right.requires_grad_(True) net_bc_left.requires_grad_(True) u_x_0 = torch.autograd.grad(net_bc_right, pt_x_0, grad_outputs=torch.ones_like(net_bc_right), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_x_1 = torch.autograd.grad(net_bc_left, pt_x_1, grad_outputs=torch.ones_like(net_bc_left), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_0 = torch.autograd.grad(u_x_0, pt_x_0, grad_outputs=torch.ones_like(u_x_0), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_1 = torch.autograd.grad(u_x_1, pt_x_1, grad_outputs=torch.ones_like(u_x_1), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1)这串代码有什么问题吗?该怎么解决

2023-06-02 上传