深度CNN中的shortcut结构:从Highway到ResNet、DenseNet
需积分: 0 122 浏览量
更新于2024-08-05
1
收藏 748KB PDF 举报
"本文介绍了深度卷积神经网络CNN中shortcut的使用,从Highway Networks到ResNet再到DenseNet,展示了shortcut在解决深度网络梯度消失和训练难题中的重要作用。"
深度卷积神经网络(CNN)在计算机视觉领域的广泛应用始于2012年AlexNet在ImageNet竞赛中的成功。然而,随着网络深度的增加,模型训练的难度也随之上升,这主要是因为梯度消失问题。为了解决这一问题,研究人员引入了shortcut或shortpath,即层之间的直接连接,以优化网络的训练过程。
首先,Highway Networks是最早尝试引入shortcut概念的模型之一。在传统的CNN(plain networks)中,仅相邻的两层之间有连接。Highway Networks通过在层间添加一个带权重的shortcut,形成类似图2的结构,允许输入信号x通过一个称为"carry gate"(C)的权重直接传递到输出层y,同时还有一个"transform gate"(T)进行特征变换。这样,即使在网络深处,输入信号也能有效地传播,降低了梯度消失的影响。实验结果表明,Highway Networks在训练误差和深度网络性能上都优于plain networks。
接着,Residual Networks(ResNet)进一步发展了shortcut的概念。ResNet的核心思想是通过identity mapping(恒等映射),即shortcut直接将输入传递到输出,并加上网络的残差学习,使得网络可以更有效地学习深度层级的特征。ResNet的设计使得即使在网络非常深时,信息依然能够无障碍地流动,解决了训练深层网络的难题,极大地推动了深度学习的发展。
最后,DenseNet是另一个利用shortcut的创新模型。不同于ResNet的并行结构,DenseNet采用了密集连接(dense connectivity),每个层都会连接到所有后续层,形成一个“稠密块”。这种设计不仅保留了ResNet的梯度流,还增强了特征的重用,减少了参数数量,提高了计算效率。
shortcut的引入是深度学习领域的一个重大突破,它有效地解决了深度CNN中的梯度消失问题,促进了更深、更复杂的网络架构的训练和发展。从Highway Networks到ResNet再到DenseNet,这些模型的演变展示了shortcut在优化网络训练、提升模型性能方面的巨大潜力,为深度学习带来了革命性的进步。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-05-28 上传
2021-09-25 上传
2021-02-20 上传
2021-03-09 上传
2021-03-22 上传
陈后主
- 粉丝: 39
- 资源: 340
最新资源
- ArtLinks:链接到我所有的艺术作品
- exam-countdown:一个帮助我跟踪即将到来的考试的小网站
- Excel模板客户登记表.zip
- PV8_PEMFC8_battery10_inverter_ACload_LC_grid_储能_SIMULINK_Battery
- PrivacyBreacher:旨在展示Android操作系统中的隐私问题的应用
- 毕业设计&课设--东南大学本科毕业设计(论文)模版.zip
- magnitude-to-number:将十亿,百万和万亿字符串转换为整数
- txt_wysiwyg:互联网的 TXT WYSIWG 编辑器
- my-delivery-boy
- 485_UART2实验_485采集温湿度_STM32F103_STM32uart2_modbus解析_rs485
- 核
- Yakov_Fain-Book:雅各布精美书
- pi4-cluster-ansible-roles:Ansible角色,用于执行Raspberry Pi 4工作程序节点的初始设置(尚无k8s软件)
- OfficeManagementSystem:一种有助于执行办公室日常活动的系统,包括出勤管理,任务管理,休假管理,投诉管理等
- 毕业设计&课设--高校校园设备管理系统-毕业设计.zip
- FitnessTracker:使用Spring Boot的Fitness Tracker RESTful Web应用程序