10 Feature Learning and Deep Learning Architecture
Survey ......................................... 375
Architecture Survey . ............................... 376
FNN Architecture Survey . ......................... 377
P—Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
MLP, Multilayer Perceptron, Cognitron, Neocognitron . . . 383
Concepts for CNNs, Convnets, Deep MLPs . .......... 387
LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
AlexNet, ZFNet ............................... 419
VGGNet and Variants MSRA-22, Baidu Deep Image,
Deep Residual Learning . . . . . . . . . . . . . . . . . . . . . . . . . 422
Half-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
NiN, Maxout . . . . . . . . ......................... 426
GoogLeNet, InceptionNet . . . . . . . . . . . . . . . . . . . . . . . . 431
MSRA-22, SPP-Net, R-CNN, MSSNN, Fast-R-CNN . . . . 434
Baidu, Deep Im age, MINWA . . ................... 437
SYMNETS—Deep Symmetry Networks . . . . . . . . . . . . . 438
RNN Architecture Survey .......................... 442
Concepts for Recurrent Neural Networks . . . . . . . . . . . . . 443
LSTM, GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
NTM, RNN-NTM, RL-NTM . . . .................. 454
Multidimensional RNNs, MDRNN ................. 457
C-RNN, QDRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
RCL-RCNN .................................. 461
dasNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
NAP—Neural Abstraction Pyramid . . . . ............. 465
BFN Architecture Survey . ......................... 469
Concepts for Machine Learning and Basis Feature
Networks . . . . . ............................... 469
PNN—Polynomial Neural Network, GMDH . ......... 486
HKD—Kernel Descriptor Learning . . . . ............. 488
HMP—Sparse Feat ure Learning ................... 490
HMAX and Neurological Models .................. 495
HMO—Hierarchical Model Optimization . . . . . . . . . . . . 506
Ensemble Methods . . . . . . . . . . . . ..................... 506
Deep Neural Network Futures . . . ...................... 508
Increasing Depth to the Max—Deep Residual
Learning (DRL) . . . .............................. 509
Approximating Complex Models Using A Simpler
MLP (Model Compression) . . . . . . . . . . . . . . . . . . . . . . . . . 510
Classifier Decomposition and Recombination . . . . . . . . . . . . 511
Summary . . ...................................... 511
Chapter 10: Learning Assignments . . ................... 513
Appendix A: Synthetic Feature Analysis ................... 515
Appendix B: Survey of Ground Truth Datasets .............. 547
Appendix C: Imag ing and Computer Vision Resources ........ 555
Contents xvii