ACM算法详解:最小生成树与Prim算法实现
需积分: 9 101 浏览量
更新于2024-07-25
收藏 292KB DOC 举报
"ACM算法集锦,包含最小生成树等编程必备算法,旨在提升编程技能。"
在这段代码中,我们可以看到两个不同的算法实现:Kruskal和Prim,这两个算法都是用于解决图论中的一个问题——寻找一个无向图的最小生成树。在计算机科学和算法竞赛(如ACM)中,这些问题的高效解决方案是非常重要的。
首先,我们来看Kruskal的最小生成树算法。这个算法的基本思想是按边的权重从小到大排序,然后依次添加边,但要确保不形成环路。在这个实现中:
1. 定义了一个`edg`结构体,存储边的两个端点(`u`和`v`)以及权重(`w`)。
2. 使用`uni`函数来合并两个集合,判断两个节点是否已经在同一个集合中,如果不在,则将它们合并,并确保合并后较小的集合指向较大的集合,以减少查找时间。
3. `main`函数中,读取测试案例数量`t`,然后对每个案例:
- 初始化`set`数组,表示节点所在的集合。
- 读入图的节点数`n`和边的信息,存储在`all_e`数组中。
- 对边按权重进行排序。
- 使用Kruskal算法逐步连接节点,记录最小生成树中最重的边。
- 输出这个最重边的权重作为最小生成树的总成本。
接着是Prim算法的实现,它从一个节点开始,逐步扩展生成树直到覆盖所有节点:
1. `set`数组用来表示每个节点所属的集合,初始化时每个节点都在自己的集合中。
2. `g`二维数组用于存储邻接矩阵,表示图的边和权重。
3. `make_`函数可能是用于构建邻接矩阵的,但由于代码不完整,这部分无法详细分析。
4. `main`函数中,Prim算法的执行流程应该包括选择一个起始节点,然后在每一步中找到与当前生成树连接且权重最小的边,将其添加到生成树中,直到所有节点都被包含。
这些算法都是为了找到一个无向图的最小生成树,即找到连接所有节点的边的子集,使得这些边的总权重最小。在实际应用中,例如在网络设计、运输规划等领域,这样的问题非常常见。通过理解和熟练掌握这些算法,可以帮助ACM参赛者或者软件开发者更有效地解决问题。
2021-12-04 上传
2021-03-23 上传
2020-12-16 上传
2023-10-11 上传
2024-10-30 上传
2023-06-03 上传
2023-09-17 上传
2023-09-17 上传
2023-06-03 上传
大卫david
- 粉丝: 312
- 资源: 11
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍