MOEA/D-GEP算法:解决复杂多目标优化问题的新方法

需积分: 32 6 下载量 170 浏览量 更新于2024-08-11 收藏 654KB PDF 举报
"这篇论文是2012年由张冬梅等人发表的,研究主题是使用MOEA/D-GEP算法解决复杂多目标优化问题。该算法结合了基于分解的多目标遗传算法(MOEA/D)与基因表达式编程(GEP),通过模拟退火策略优化GEP模型,以提高种群个体分布的精度并降低计算成本。通过ZDT和DTLZ等标准测试函数的实验,显示了算法在IGD性能指标上的优越性,从而证明了进化建模技术在MOEA/D框架中的有效应用。" 本文主要探讨的是在多目标优化问题中如何更有效地寻找最优解。多目标优化问题通常涉及多个相互冲突的目标,使得找到全局最优解变得极其复杂。传统的单目标优化方法往往无法满足多目标优化的需求,因此研究人员提出了各种多目标优化算法,如MOEA/D。 MOEA/D是一种基于分解的多目标遗传算法,其核心思想是将多目标问题分解成一系列子问题,每个子问题对应于一个解的子集,即所谓的“帕累托前沿”。这种方法有助于分散搜索空间,避免局部最优解,并促进种群多样性。 而GEP(基因表达式编程)是一种进化计算方法,它将个体表示为计算机程序的结构,通过模拟生物进化过程来搜索解决问题的有效表达式。在MOEA/D-GEP中,GEP被用于对MOEA/D算法中分解后的子问题解进行建模,通过模拟退火策略优化这些表达式,以提升模型预测的准确性。 实验部分,研究者使用了ZDT和DTLZ等国际公认的多目标优化测试函数,这些函数设计复杂,能够充分检验算法在处理非线性、非凸以及多峰问题时的能力。通过对比MOEA/D-GEP算法与MOEA/D-EGO(进化游戏优化)算法的性能,结果显示MOEA/D-GEP在IGD(Inverted Generational Distance)指标上有更好的表现,这表明了引入进化建模技术可以显著提高解的质量和分布均匀性。 MOEA/D-GEP算法为复杂多目标优化问题提供了一种有效且精确的解决方案,通过结合两种强大的优化工具——MOEA/D和GEP,能够在减少计算成本的同时,提高求解的精度和效率。这一工作对于多目标优化领域的理论研究和实际应用都具有重要的参考价值。

4 Experiments This section examines the effectiveness of the proposed IFCS-MOEA framework. First, Section 4.1 presents the experimental settings. Second, Section 4.2 examines the effect of IFCS on MOEA/D-DE. Then, Section 4.3 compares the performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on 19 test problems. Finally, Section 4.4 compares the performance of IFCS-MOEA/D-DE with five state-of-the-art MOEAs on four real-world application problems. 4.1 Experimental Settings MOEA/D-DE [23] is integrated with the proposed framework for experiments, and the resulting algorithm is named IFCS-MOEA/D-DE. Five surrogate-based MOEAs, i.e., FCS-MOEA/D-DE [39], CPS-MOEA [41], CSEA [29], MOEA/DEGO [43] and EDN-ARM-OEA [12] are used for comparison. UF1–10, LZ1–9 test problems [44, 23] with complicated PSs are used for experiments. Among them, UF1–7, LZ1–5, and LZ7–9 have 2 objectives, UF8–10, and LZ6 have 3 objectives. UF1–10, LZ1–5, and LZ9 are with 30 decision variables, and LZ6–8 are with 10 decision variables. The population size N is set to 45 for all compared algorithms. The maximum number of FEs is set as 500 since the problems are viewed as expensive MOPs [39]. For each test problem, each algorithm is executed 21 times independently. For IFCS-MOEA/D-DE, wmax is set to 30 and η is set to 5. For the other algorithms, we use the settings suggested in their papers. The IGD [6] metric is used to evaluate the performance of each algorithm. All algorithms are examined on PlatEMO [34] platform.

2023-05-24 上传