Python机器学习:预测分析核心技术

5星 · 超过95%的资源 需积分: 12 1.0k 下载量 118 浏览量 更新于2024-07-22 8 收藏 13.35MB PDF 举报
"Machine Learning in Python" 是一本由Michael Bowles编写的书籍,专注于通过Python实现机器学习的必备技术,用于预测性分析。这本书共有360页,第一版,英文版,由Wiley出版,出版日期为2015年4月20日。ISBN-10为1118961749,ISBN-13为9781118961742。 本书旨在教授读者如何使用两种核心机器学习算法进行数据分析和预测,这些算法被证明在实践中既简单又有效。作者避免了复杂的数学和统计知识,而是通过Python代码来解释和应用这些算法,使机器学习对更广泛的读者群体变得可及。书中的例子清晰地展示了算法的工作机制,帮助读者理解如何选择合适的算法,准备数据,并在实际中运用训练好的模型。 书中的内容涵盖了以下几个关键主题: 1. **两个核心预测算法**:书中介绍的两种算法家族是线性回归和集成方法(ensemble methods)。线性回归是一种基础的预测模型,适用于简单的线性关系预测;而集成方法则结合多个模型,提高预测的准确性和鲁棒性。 2. **问题与数据的理解**:在开始建模之前,了解问题背景和数据特性至关重要。这一章会指导读者如何解析数据,识别问题的关键因素。 3. **预测模型构建**:在性能、复杂度和大数据之间找到平衡,构建既能解决问题又不会过于复杂的模型。 4. **正则化线性回归**:探讨了如何通过正则化技术改进线性回归模型,防止过拟合并提高泛化能力。 5. **基于正则化的预测模型构建**:这部分深入讲解如何利用Python实现这些方法,解决实际问题。 6. **集成方法**:介绍如随机森林、梯度提升等集成学习技术,以及它们的优势和使用场景。 7. **使用Python构建集成模型**:提供实际的Python代码示例,帮助读者构建自己的集成模型解决方案。 通过本书,读者将掌握一套核心的Python编程技巧,学习构建各种预测模型的方法,以及评估模型性能的手段。无论对于初学者还是有一定经验的数据分析师,这本书都是一个宝贵的资源,它简化了机器学习的过程,使得没有深厚数学或统计背景的人也能有效地运用机器学习技术。 "Machine Learning in Python" 提供了一条简洁、实用的途径,让读者能够用Python这个广泛使用的编程语言实现机器学习,从而更好地理解和应用预测分析。通过书中的案例和代码,读者可以构建自己的数据解决方案,进一步提升数据分析和预测的能力。
2016-03-22 上传
Machine Learning in Python: Essential Techniques for Predictive Analysis Paperback: 360 pages Publisher: Wiley; 1 edition (April 27, 2015) Language: English ISBN-10: 1118961749 ISBN-13: 978-1118961742 Learn a simpler and more effective way to analyze data and predict outcomes with Python Machine Learning in Python shows you how to successfully analyze data using only two core machine learning algorithms, and how to apply them using Python. By focusing on two algorithm families that effectively predict outcomes, this book is able to provide full descriptions of the mechanisms at work, and the examples that illustrate the machinery with specific, hackable code. The algorithms are explained in simple terms with no complex math and applied using Python, with guidance on algorithm selection, data preparation, and using the trained models in practice. You will learn a core set of Python programming techniques, various methods of building predictive models, and how to measure the performance of each model to ensure that the right one is used. The chapters on penalized linear regression and ensemble methods dive deep into each of the algorithms, and you can use the sample code in the book to develop your own data analysis solutions. Machine learning algorithms are at the core of data analytics and visualization. In the past, these methods required a deep background in math and statistics, often in combination with the specialized R programming language. This book demonstrates how machine learning can be implemented using the more widely used and accessible Python programming language. * Predict outcomes using linear and ensemble algorithm families * Build predictive models that solve a range of simple and complex problems * Apply core machine learning algorithms using Python * Use sample code directly to build custom solutions Machine learning doesn't have to be complex and highly specialized. Python makes this technology more accessible to a much wider audience, using methods that are simpler, effective, and well tested. Machine Learning in Python shows you how to do this, without requiring an extensive background in math or statistics.