MATLAB实现的指纹识别算法研究
177 浏览量
更新于2024-06-23
收藏 2.09MB DOC 举报
"指纹识别算法的MATLAB实现本科论文探讨了基于MATLAB的指纹识别系统,主要包括图像预处理、特征提取和特征匹配三个关键步骤。"
指纹识别是一种广泛应用于安全领域的生物识别技术,因其个体的独特性与不变性而备受青睐。在MATLAB环境下,通过编程实现指纹识别算法可以有效地简化开发过程并提高效率。
首先,图像预处理是指纹识别的第一步,其目的是优化原始图像的质量,便于后续处理。这一阶段通常包括以下四个环节:
1. **图像分割**:将指纹图像从复杂的背景中分离出来,通常是通过对比度增强和边缘检测实现。
2. **滤波增强**:利用滤波器如中值滤波或高斯滤波去除噪声,提升指纹纹路的清晰度。
3. **二值化**:将图像转化为黑白二值图像,使纹路更加明显,利于后续处理。
4. **细化**:进一步细化指纹纹路,使其更精细,便于特征点的定位。
接下来是**特征提取**,这一步骤是从预处理后的图像中找出能够代表指纹独特性的特征,主要是端点和分叉点。这些特征点是识别指纹的关键,因为它们在每个指纹中都是独一无二的。
最后,**特征匹配**是将两个指纹的特征点进行比较,以确定它们是否来自同一个手指。通过计算特征点的数量、位置和方向的一致性来评估匹配度。匹配算法可以采用如最小距离匹配、局部二进制模式(LBP)或结构描述符等方法。
本文提供的MATLAB程序实现了上述所有过程,并展示了处理结果,表明在MATLAB中实现的指纹识别算法能够达到理想的预处理效果,满足识别的准确性和实用性需求。关键词如“分割”、“二值化”、“细化”、“特征点提取”和“匹配”都反映了论文的核心内容。
这篇本科论文为理解和实践指纹识别技术提供了一个实用的MATLAB平台,对于电子信息工程专业的学生或者对此领域感兴趣的研究者来说,是一个有价值的参考资源。通过这样的实现,读者可以深入理解指纹识别的各个环节,并有可能在此基础上进行算法优化和改进。
2022-07-04 上传
2023-07-06 上传
2022-10-23 上传
2023-07-08 上传
2021-09-23 上传
2023-06-12 上传
2023-07-10 上传
黑色的迷迭香
- 粉丝: 797
- 资源: 4万+
最新资源
- app:詹金斯的应用程序
- react-hot-export-loader:一个Webpack加载器,自动插入react-hot-loader代码,灵感来自react-hot-loader-loader
- DIY制作属于自己的CP2102 USB-UART桥接器(原理图+PCB源文件)-电路方案
- 雅典:开源网络思想。 内部封闭测试正在进行中! 通过https:forms.gle9L1D1T7R3G7pvh1e7加入候补名单。 赞助我们以更快获得测试版!
- uni-app之flex布局教程 uniapp在线教程 uni app视频教程
- jamesSampica.github.io:自己的博客
- Android动画效果源代码
- 教师招聘学习软件支持幼儿教师招聘,小学中学教师招聘,小学中学教育学心理学等等
- LoveAndShare:基于Python django建造的知识分享与视频播放网站
- fp-gitlab-example:用于转换API请求以使用fp-ts的示例代码
- 彻底搞懂Spring+SpringMVC+MyBatis 框架整合(IDEA版,含源码)
- EmployeeWageComputation
- my-first-webpage
- getting_cleaning_data:回购获取和清洁数据; JHU课程; 数据科学专业
- MPLAB ICD2仿真器原理图+PCB+HEX文件-电路方案
- 灰白经典婚纱照网站模板