动态调度:传统与智能方法的深度剖析与未来趋势
98 浏览量
更新于2024-08-30
收藏 123KB PDF 举报
动态调度作为信息技术领域的重要组成部分,在生产、物流、交通等多个领域发挥着关键作用。本文《动态调度的研究方法综述》由钱晓龙、唐立新和刘文新三位作者撰写,发表于2001年的《控制与决策》期刊第16卷第2期。文章针对动态调度的研究方法进行了深入探讨。
首先,作者将动态调度的研究方法划分为两大类别:传统方法和智能方法。传统方法主要包括最优化方法、启发式方法以及仿真方法。最优化方法通过数学模型求解问题,力求找到全局最优或近似最优解,如线性规划、整数规划等。启发式方法则是一种经验性策略,它依赖于经验和规则来寻找解决问题的有效途径,尽管可能不是全局最优,但通常能快速找到较优解,如遗传算法、模拟退火等。仿真方法则是通过计算机模拟真实世界环境,对调度方案进行测试和优化,常用于复杂系统动态性能评估。
另一方面,智能方法是近年来的研究热点,包括专家系统、人工神经网络、智能搜索和多Agent系统等。专家系统利用专家知识库来处理问题,模仿人类专家决策过程。人工神经网络通过模拟人脑神经元工作原理,学习和处理复杂关系,常用于模式识别和预测。智能搜索如遗传算法、蚁群算法等,通过迭代优化不断探索解决方案空间。多Agent系统则模拟多个独立的智能体共同协作,适用于分布式、复杂的动态环境。
文章详细分析了各类方法的特点、适用场景和局限性,并提出了动态调度领域的未来研究方向。传统方法虽然在某些情况下表现稳定,但可能在处理大规模、高维度问题时效率较低。而智能方法具有更强的适应性和学习能力,但需要大量数据和计算资源。因此,未来的研究可能集中在结合传统方法的优势,提升智能方法的效率和泛化能力,同时探索新的混合方法和跨学科融合,比如将机器学习和强化学习应用于动态调度中。
此外,文章还强调了动态调度领域的开放性问题,如如何处理不确定性、实时性要求、动态环境下的适应性以及如何更好地融入物联网、大数据等新技术。通过这些问题的深入研究,有望推动动态调度技术在实际应用中的更高效和精准表现,为各行各业的生产优化提供强有力的支持。
2011-05-02 上传
2022-12-18 上传
2021-09-29 上传
2009-11-06 上传
2009-03-16 上传
2023-09-23 上传
2022-11-12 上传
2021-09-20 上传
2021-01-14 上传
weixin_38586186
- 粉丝: 9
- 资源: 943
最新资源
- NetDocuments-crx插件
- 更丰富:TypeScript后端框架专注于开发效率,使用专用的反射库来帮助您愉快地创建健壮,安全和快速的API
- bianma.rar_Java编程_Java_
- 简单的editActionsForRowAt功能,写在SWIFTUI上-Swift开发
- 反弹:抛出异常时立即获取堆栈溢出结果的命令行工具
- zap-android:专注于用户体验和易用性的原生android闪电钱包:high_voltage:
- Doc:文献资料
- KobayashiFumiaki
- naapurivahti:赫尔辛基大学课程数据库应用程序项目
- Cura:在Uranium框架之上构建的3D打印机切片GUI
- SwiftUI中的倒计时影片混乱-Swift开发
- Example10.rar_串口编程_Visual_C++_
- GeraIFRelatorio:GeraIFRelatorio项目-自动化以帮助在Eclipse引擎上开发的Cobol语言项目编码
- CyberArk Identity Browser Extension-crx插件
- 智能汽车竞赛:完全模型组学习软件资源
- 键盘:在Windows和Linux上挂钩并模拟全局键盘事件