Matlab实现Dalal-HOG算法详解:基础教程与代码
版权申诉
10 浏览量
更新于2024-08-05
收藏 45KB DOC 举报
在Matlab中实现霍夫关键点(HOG)算法是一个重要的计算机视觉技术,用于对象检测和识别,尤其是在行人检测中非常流行。该算法由Dalal和Triggs在2005年的CVPR会议上提出,用于计算输入图像中的方向梯度直方图特征。MatlabHOGCalculator函数提供了一个基本的、未优化的实现,旨在帮助初学者理解算法的工作原理并提升Matlab编程技能。
MatlabHOGCalculator函数接受多个参数:
1. **img**:输入图像,可以是灰度或彩色图像,但通常霍夫梯度描述符仅适用于灰度图像。
2. **cellpw** 和 **cellph**:cell size,表示每个小窗口(cell)的宽度和高度。这些值决定了特征图的尺度。
3. **nblockw** 和 **nblockh**:block size,表示将图像划分为块的大小,每个块将用于计算局部梯度和方向。
4. **nthet**:θ步长,即在计算方向直方图时的角度间隔。
5. **overlap**:相邻块之间的重叠比例,确保在边界处有足够的像素信息。
6. **isglobalinterpolate**:是否进行全局插值,这会影响特征图的大小。
7. **issigned**:是否使用有符号梯度,这对于区分正向和负向梯度很重要。
8. **normmethod**:特征向量的归一化方法,如L2范数或归一化到特定区间。
函数的主要步骤包括:
- 将图像划分成不重叠的子区域(blocks)。
- 对每个子区域,计算局部梯度图像,然后将其转换为方向梯度直方图(histogram of oriented gradients)。
- 对所有方向直方图进行归一化处理,如按行或列求和,或者使用指定的归一化方法。
- 可选地,对全局图像进行插值,以便生成固定大小的特征向量。
- 最后,将所有子区域的特征向量组合成单个特征向量,这就是HOG特征。
注意,由于此代码没有经过优化,相比OpenCV 2.0版本的霍夫梯度描述符,它在性能上可能相对较慢。此外,该代码中可能存在Ronan指出的错误,需要根据他的修正来改进。提供的演示代码可以帮助理解算法的应用,但在实际工作中,可能需要根据具体需求进行修改和优化。
MatlabHOGCalculator函数为理解霍夫算法的核心原理提供了实践平台,同时也能锻炼编程技能。在使用时,要关注性能优化和可能存在的错误,以便将其应用到实际项目中。
131 浏览量
2022-07-06 上传
2023-06-09 上传
2022-07-14 上传
2022-07-15 上传
2022-07-06 上传
2024-08-02 上传
阿里matlab建模师
- 粉丝: 4237
- 资源: 2840
最新资源
- JavaScript实现的高效pomodoro时钟教程
- CMake 3.25.3版本发布:程序员必备构建工具
- 直流无刷电机控制技术项目源码集合
- Ak Kamal电子安全客户端加载器-CRX插件介绍
- 揭露流氓软件:月息背后的秘密
- 京东自动抢购茅台脚本指南:如何设置eid与fp参数
- 动态格式化Matlab轴刻度标签 - ticklabelformat实用教程
- DSTUHack2021后端接口与Go语言实现解析
- CMake 3.25.2版本Linux软件包发布
- Node.js网络数据抓取技术深入解析
- QRSorteios-crx扩展:优化税务文件扫描流程
- 掌握JavaScript中的算法技巧
- Rails+React打造MF员工租房解决方案
- Utsanjan:自学成才的UI/UX设计师与技术博客作者
- CMake 3.25.2版本发布,支持Windows x86_64架构
- AR_RENTAL平台:HTML技术在增强现实领域的应用