视觉计算基础:计算机视觉、图形学与图像处理核心概念

需积分: 10 46 下载量 58 浏览量 更新于2024-07-19 1 收藏 116.28MB PDF 举报
"Introduction to Visual Computing-CRC(2018).pdf" 本书是作者在加州大学欧文分校教授视觉计算课程十多年的成果,该课程旨在为学生提供计算机图形学、计算机视觉和图像处理的基础知识。这个课程是一个前瞻性的课程,成为所有计算机图形学、计算机视觉和图像处理学生的基础,并为后来的相关领域新教员提供了教学基础。作为研究生课程的核心部分,它让学生有机会在深入更专注的领域之前,广泛接触这些领域。此外,自2006年以来,这个课程也被视为专业硕士项目的核心课程之一,反映了研究领域的趋势,即这些领域的研究人员在其他领域也有强烈的存在感,形成了跨越所有这些领域的年轻且活跃的研究子社区。 "Introduction to Visual Computing"涵盖了计算机视觉、图形学和图像处理的核心概念,由Aditi Majumder和M. Gopi两位来自加州大学欧文分校的专家撰写。此书由CRC Press(Taylor & Francis Group的子公司)出版,旨在提供可靠的数据和信息,但不承担所有材料准确性的责任,或其使用可能带来的后果。书中尽可能追溯并引用了所有复制材料的版权持有者,如果未经许可在此形式下发布,作者和出版社向版权持有者表示歉意。 书中的内容可能包括以下几个方面: 1. 计算机图形学基础:介绍了用于创建和操纵图像的技术,如二维和三维几何建模、渲染、光照模型以及动画原理。 2. 计算机视觉基础:涵盖了图像分析和理解的关键概念,包括图像特征检测、目标识别、场景理解、运动估计和三维重建等。 3. 图像处理基础:讨论了图像的获取、增强、恢复、压缩和分析等技术,涉及滤波理论、色彩模型、图像变换和图像分割等内容。 4. 跨领域应用:探讨了视觉计算如何与其他领域,如人工智能、机器学习、模式识别和生物医学工程等相结合,以解决实际问题。 5. 研究趋势与交叉学科:分析了近年来计算机图形学、计算机视觉和图像处理之间的相互渗透,以及这些领域如何共同推动视觉计算的前沿发展。 6. 实践项目和案例研究:可能包含实际项目示例,帮助读者将理论知识应用于实际场景,增强理解和应用能力。 这本书不仅适合计算机科学领域的研究生,也适用于希望深入了解视觉计算基础知识的专业人士,以及想要拓宽研究视野的跨学科研究者。通过阅读,读者可以建立起对这三个关键领域的全面理解,为进一步深入学习和研究奠定坚实基础。
293 浏览量
Introduction to Visual Computing: Core Concepts in Computer Vision, Graphics, and Image Processing covers the fundamental concepts of visual computing. Whereas past books have treated these concepts within the context of specific fields such as computer graphics, computer vision or image processing, this book offers a unified view of these core concepts, thereby providing a unified treatment of computational and mathematical methods for creating, capturing, analyzing and manipulating visual data (e.g. 2D images, 3D models). Fundamentals covered in the book include convolution, Fourier transform, filters, geometric transformations, epipolar geometry, 3D reconstruction, color and the image synthesis pipeline. The book is organized in four parts. The first part provides an exposure to different kinds of visual data (e.g. 2D images, videos and 3D geometry) and the core mathematical techniques that are required for their processing (e.g. interpolation and linear regression.) The second part of the book on Image Based Visual Computing deals with several fundamental techniques to process 2D images (e.g. convolution, spectral analysis and feature detection) and corresponds to the low level retinal image processing that happens in the eye in the human visual system pathway. The next part of the book on Geometric Visual Computing deals with the fundamental techniques used to combine the geometric information from multiple eyes creating a 3D interpretation of the object and world around us (e.g. transformations, projective and epipolar geometry, and 3D reconstruction). This corresponds to the higher level processing that happens in the brain combining information from both the eyes thereby helping us to navigate through the 3D world around us. The last two parts of the book cover Radiometric Visual Computing and Visual Content Synthesis. These parts focus on the fundamental techniques for processing information arising from the interaction of light with objects around us, as well as the fundamentals of creating virtual computer generated worlds that mimic all the processing presented in the prior sections. The book is written for a 16 week long semester course and can be used for both undergraduate and graduate teaching, as well as a reference for professionals.