Delta机器人3D打印机Python控制程序发布

版权申诉
0 下载量 56 浏览量 更新于2024-11-15 收藏 17KB ZIP 举报
资源摘要信息:"Delta机器人3D打印机。_Python_下载.zip文件是一个包含名为'rostock-master'的压缩包内容。Delta机器人3D打印机是一种特定类型的3D打印机,采用Delta机器人设计,其特点是具有较高的打印速度和打印范围。Delta机器人3D打印机的设计允许其在垂直方向上进行高效的运动和定位,适用于需要快速打印较大尺寸对象的场合。通常这类打印机使用开源硬件和软件,方便用户进行定制和优化。 Python是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能而著称。它支持面向对象、命令式、函数式和过程式编程。在3D打印领域,Python常常被用来开发打印控制软件、切片软件以及管理打印任务。 由于文件描述信息较少,没有具体提及'rostock-master'的详细内容,但根据常见的项目结构,我们可以推测该文件可能包含用于控制Delta机器人3D打印机的Python代码、配置文件以及相关的文档。例如,它可能包括用于机器校准、打印任务规划、运动控制以及用户界面交互的Python脚本和库。 Delta机器人3D打印机的控制系统通常是基于微控制器或微处理器,如Arduino或Raspberry Pi,而Python代码则可能用于与这些设备通信。在使用'rostock-master'文件时,用户可能需要根据自己的硬件配置进行适当的修改或编译工作。 此外,考虑到'rostock-master'文件名,我们可以推测这可能与RepRap项目有关。RepRap是一个开源的3D打印机项目,旨在制造可以自我复制的3D打印机。该项目推动了3D打印技术的普及和创新。如果真是如此,那么用户可能需要安装RepRap的固件和软件来使打印机运行。 用户在下载和使用该资源之前,应该具备一定的技术背景,了解基本的3D打印原理、机械操作以及电子和计算机编程知识。此外,用户需要有能力对软件进行调试和维护,以确保打印质量和设备的安全运行。对于3D打印机的爱好者、工程师或研究人员而言,这种软件资源是宝贵的,可以为他们提供更深入探索和开发3D打印技术的机会。"

解释这段代码for (i in cancer_types){ admat<-read.csv(str_c(dir,"\tcga_data\",i,"\admat.csv"),check.names=F) positive_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\positive_normalized_rna.csv"),row.names = 1, check.names = F) negative_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\negative_normalized_rna.csv"),row.names = 1, check.names = F) positive_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\positive_normalized_mi.csv"),row.names = 1, check.names = F) negative_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\negative_normalized_mi.csv"),row.names = 1, check.names = F) normal_rna<-read.csv(str_c(dir,"\tcga_data\",i,"\normal_normalized_rna.csv"),row.names = 1, check.names = F) normal_mi<-read.csv(str_c(dir,"\tcga_data\",i,"\normal_normalized_mi.csv"),row.names = 1, check.names = F) positive_delta<-cal_delta_pcc(admat,normal_rna,normal_mi,positive_rna,positive_mi) negative_delta<-cal_delta_pcc(admat,normal_rna,normal_mi,negative_rna,negative_mi) wilcox<-delta_wilcox_test(positive_delta,negative_delta,wilcox_pval) write.csv(wilcox,str_c(dir,"\tcga_data\",i,"\wilcox.csv"),quote=F,row.names=F) row.names(wilcox)<-str_c(wilcox[,1],"",wilcox[,2]) positive_delta<-na.omit(positive_delta) row.names(positive_delta)<-str_c(positive_delta[,1],"",positive_delta[,2]) negative_delta<-na.omit(negative_delta) row.names(negative_delta)<-str_c(negative_delta[,1],"_",negative_delta[,2]) positive_delta<-positive_delta[row.names(positive_delta)%in%row.names(wilcox),] negative_delta<-negative_delta[row.names(negative_delta)%in%row.names(wilcox),] negative_delta<-negative_delta ml_input<-merge(positive_delta,negative_delta,by="row.names") ml_input<-ml_input write.csv(ml_input,str_c(dir,"\tcga_data\",i,"\ml_input.csv"),quote=F,row.names=F) }

2023-07-12 上传

data_dir='/public/work/Personal/wuxu/qiantao_17' for file1 in ${data_dir}/*.fasta; do for file2 in ${data_dir}/*.fasta; do if [ "$file1" != "$file2" ]; then touch snp_indel.end.sh && cat snp_indel.end.sh && \ export PATH=/public/work/Personal/pangshuai/software/conda/miniconda3/bin/:${PATH} && \ nucmer --mum -t 8 -g 1000 -p ${file1##*/}.${file2##*/}.ref_based.nucmer $file1 $file2 && \ delta-filter -1 -l 200 ${file1##*/}.${file2##*/}.ref_based.nucmer.delta > ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter && \ dnadiff -d ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter -p ${file1##*/}.${file2##*/}.ref_based.nucmer && \ show-coords -rcloT ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter > ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.coords && \ show-coords -THrd ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter > ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.syri.coords && \ show-snps -ClrTH ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter > ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.snp && \ show-diff ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter > ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.inv && \ perl /public/work/Pipline/Structural_Variation/pipeline/2.1.1/bin/filter_the_MUmmer_SNP_file.pl ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.snp ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.snp.SNPs ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.snp.Insertions ${file1##*/}.${file2##*/}.ref_based.nucmer.delta.filter.snp.Deletions 10000000 && \ touch snp_indel.end.tmp && \ mv snp_indel.end.tmp snp_indel.end && \ sleep 10 fi done done ,增加一个判断,使/public/work/Personal/wuxu/qiantao_17路径下以.fasta结尾的文件两两一组不分前后只组合一次,然后再执行touch 后面的代码

2023-06-03 上传

优化这段代码 function [car, time_end] = Veh_following_IDM(car, time, time_step) time_end = 0; car.a_pre = car.a; car.d(:, :) = 0; %--------------更新速度和位置--------------% for car_n = length(car.v):-1:1 car.x(car_n) = car.v(car_n) * time_step + (car.a(car_n) * time_step^2) / 2 + car.x(car_n); car.v(car_n) = max(car.a(car_n) * time_step + car.v(car_n), 0); % 约束速度项大于等于0 end %--------------计算加速度--------------% sort_x = sort(car.x); car_n_last = length(sort_x); for car_id = length(sort_x):-1:1 car_n = car_id; if car_n ~= car_n_last car_n_front = car_id + 1; % 找出前车 [a_n] = acc_calculate(car, car_n, car_n_front); car.a(car_n) = a_n; if car.f(car_id) ~= 0 % 其他的操作 end else car.a(car_n) = 0; end end if sum(car.v(:,:)) <= 0.001 && time > 0.1 time_end = time; end end %% 车辆加速度计算函数,IDM模型 function [a_n] = acc_calculate(car, car_n, car_n_front) global road_length d_max h_safe car_length v_max a_max d_safe theta kappa_i road_width time_step =0.1; delta_x = car.x(car_n_front) - car.x(car_n) - car_length; delta_y = car.y(car_n_front)- car.y(car_n) ; theta = delta_y / delta_x; if delta_x < 0 delta_x = delta_x + road_length; end v_n_plus = car.v(car_n) * cos(theta); v_n_minus = car.v(car_n) * sin(theta); delta_v = v_n_plus - car.v(car_n_front)* cos(theta); term1 = 1 - (v_n_plus / v_max)^4; term2 = (((d_safe + v_n_plus * kappa_i * h_safe) + (v_n_plus * delta_v) / (2 * sqrt(a_max*d_max))) / (delta_x - car_length))^2; term3 =delta_y / road_width; term4 = (2 * (v_n_minus *time_step+ delta_y)) / (time_step^2); a_n = a_max * (term1 - term2) + term3 *term4; end

2023-07-12 上传