混合遗传二进制粒子群优化在配电网重构的应用
版权申诉
5星 · 超过95%的资源 183 浏览量
更新于2024-08-12
1
收藏 185KB DOCX 举报
"基于混合遗传二进制粒子群优化的配电网重构算法的研究,探讨了如何利用这种优化算法解决复杂的非线性组合优化问题。文章着重于配电网重构,通过开关状态的0和1编码来表示,以最小化节点电压偏差、线路损耗和负荷不均衡度为目标。"
在电力系统领域,配电网重构是一项关键任务,它涉及到对网络中开关的控制以优化网络性能。本研究聚焦于一种创新的优化方法——混合遗传二进制粒子群优化算法,这是一种结合了遗传算法和粒子群优化算法优势的复合优化技术。在配电网系统中,重构问题复杂,因为系统内有分段开关和联络开关两种类型,这导致了非线性和组合优化的挑战。
文章的第四章深入讨论了如何应用这种优化算法来解决配电网重构问题。首先,介绍了问题的基本背景,强调了开关状态的重新配置可以通过二进制编码(0和1)来表示。然后,提出了优化目标:最小化所有节点电压偏差之和的均值期望,减少所有线路损耗之和的均值期望,以及最小化所有线路负荷均衡度之和的均值期望。这些目标旨在确保配电网的稳定运行和高效能。
在数学建模部分,文章详细阐述了目标函数的构建。总线路损耗被选为一个关键的优化指标,其期望值通过随机负荷和分布式电源的统计信息来计算。公式(4.1)至(4.3)定义了总线路损耗的期望值计算,其中包含了开关状态、电阻、功率和电压等因素。此外,公式(4.4)则体现了线路负荷均衡度的计算,这是评估配电网性能的重要参数,反映了支路间负荷分配的均匀程度。
计算过程中,必须遵循一系列约束条件,包括节点电压约束、支路功率约束以及网络结构约束,如避免形成环网和孤岛。通过这样的优化模型,混合遗传二进制粒子群优化算法可以搜索到开关的最佳配置,从而改善配电网的整体性能。
该研究为配电网的重构提供了一种新颖的优化策略,结合了两种强大的优化算法,有望提高配电网的可靠性和效率。这种方法对于电力系统的运营和规划具有重要的理论与实践价值,特别适用于应对分布式能源的接入和电网复杂性的增加。
2021-10-01 上传
315 浏览量
2022-07-03 上传
改进二进制粒子群算法在配电网重构中的应用:基于IEEE33节点系统的功率损耗优化与动态重构程序,改进二进制粒子群算法配电网重构 可以动态生成配电网重构过程,目标函数为功率损耗,算例为IEEE33节点系
2025-01-21 上传
150 浏览量
2476 浏览量
315 浏览量
112 浏览量
2021-09-29 上传
fpga和matlab
- 粉丝: 18w+
最新资源
- Oracle数据库深度探索:体系结构与编程艺术
- 日语计算机词汇解析
- 理解JavaScript基础与HTML DOM操作
- 英语六级翻译核心词组与句子
- UNICODE:统一字符编码的全球解决方案
- 正则表达式详解:匹配与操作
- Together初学者指南:从零创建项目
- 《330 Java Tips》:汇集众多编程智慧
- 2005年中国系统分析员年第1期:软件开发模型比较与项目管理探讨
- 2008年4月四级计算机考试试卷回顾:数据库与SQL Server知识点梳理
- 配置Nokia Kjava开发环境指南
- 软件测试全解析:黑盒、白盒、灰盒及更多
- 基于CTT的通用试题库管理系统开发
- 精通Linux:从新手到高手的进阶教程
- C语言实现队列数据结构与源码详解
- 智能火灾报警系统:无线远程监控技术探索