MATLAB开发:高效读取COSMIC/CDAAC大气剖面数据

需积分: 21 2 下载量 56 浏览量 更新于2024-11-10 收藏 3KB ZIP 举报
资源摘要信息:"read_atmPrf_func( infile ): 从 COSMIC/CDAAC 文件中读取 atmPrf-matlab开发" 从给定的文件信息中,我们可以提取到以下知识点: 1. 文件标题中提到的 "read_atmPrf_func( infile )" 是一个函数或者程序的名字,其主要功能是从 COSMIC/CDAAC 的数据库中读取数据。COSMIC(Constellation Observing System for Meteorology, Ionosphere and Climate)是一个全球定位系统(GPS)无线电掩星项目的名称,该项目用于监测大气层和气候。而 CDAAC(COSMIC Data Analysis and Archive Center)是COSMIC项目的数据中心和档案库。 2. COSMIC/CDAAC 数据库是一个重要的科学数据资源,它收集了来自 COSMIC 卫星任务的数据,这些数据包括大气廓线、电离层和气候变量等信息。这些数据对于气象学、气候研究、大气科学和空间物理学等领域的研究者而言非常重要。 3. 函数 "read_atmPrf_func" 可能是用Matlab语言编写的,因为文件标签明确指出 "matlab"。Matlab是数学计算和工程绘图的流行工具,特别是在信号处理、通信、控制系统、深度学习等领域。Matlab具有强大的数据处理能力,通过其内置函数和工具箱可以方便地访问外部数据和文件格式,如本文提到的 COSMIC/CDAAC 数据库。 4. 从描述中提供的链接 *** 可以知道这是一个通往CDAAC官方数据中心的在线资源,用户可以通过这个链接访问并下载所需的COSMIC数据。对于科研人员来说,这样的链接是获取实验数据的重要途径。 5. 压缩包子文件的文件名称列表中的 "read_atmPrf_func.zip" 暗示了此函数或程序可能被包含在一个压缩文件中。在很多情况下,开发者会将源代码、文档和其他辅助文件打包成一个压缩包,方便传输和部署。 6. "atmPrf" 可能是表示大气剖面(atmospheric profiles)的缩写。大气剖面是指从地面到大气层中某一特定高度的垂直剖面,通常包含温度、湿度、气压等物理参数的信息。在气象学研究中,大气剖面是研究天气系统变化和大气结构的重要工具。 综合上述内容,可以推断出该文件 "read_atmPrf_func.zip" 是一个用Matlab开发的工具包或函数库,它能够从COSMIC/CDAAC的官方数据库中读取大气剖面数据。这个功能对于进行大气科学相关研究的学者来说是很有帮助的,因为它能够简化数据获取和处理的过程,使得研究者能够更加集中于数据分析和科学探索。此外,该工具可能包含了必要的文档说明和使用案例,以便用户了解如何正确地使用这个函数或程序来满足其研究需求。
2023-07-13 上传

org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 830, in main process() File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/worker.py", line 820, in process out_iter = func(split_index, iterator) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 5405, in pipeline_func return func(split, prev_func(split, iterator)) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 5405, in pipeline_func return func(split, prev_func(split, iterator)) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 828, in func return f(iterator) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/rdd.py", line 3964, in combineLocally merger.mergeValues(iterator) File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/shuffle.py", line 256, in mergeValues for k, v in iterator: File "/Users/zzs/PycharmProjects/pythonProject/venv/lib/python3.10/site-packages/pyspark/python/lib/pyspark.zip/pyspark/util.py", line 81, in wrapper return f(*args, **kwargs) File "/Users/zzs/PycharmProjects/pythonProject/pyspark项目练习/项目练习2.py", line 7, in <lambda> json_str_file = file_rdd.flatMap(lambda x: x.spilt("|")) AttributeError: 'str' object has no attribute 'spilt' at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:561) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:767) at org.apache.spark.api.python.PythonRunner$$anon$3.read(PythonRunner.scala:749) at org.apache.spark.api.python.BasePythonRun

2023-07-20 上传

06/06/2023-16:31:47] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +0, now: CPU 0, GPU 0 (MiB) /home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/tensorrt/__init__.py:166: FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar. bool: np.bool, Traceback (most recent call last): File "/home/sniper/anaconda3/envs/labelme/bin/yolo", line 8, in <module> sys.exit(entrypoint()) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/yolo/cfg/__init__.py", line 398, in entrypoint getattr(model, mode)(**overrides) # default args from model File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/yolo/engine/model.py", line 302, in val validator(model=self.model) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/yolo/engine/validator.py", line 114, in __call__ model = AutoBackend(model, device=self.device, dnn=self.args.dnn, data=self.args.data, fp16=self.args.half) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/ultralytics/nn/autobackend.py", line 174, in __init__ dtype = trt.nptype(model.get_binding_dtype(i)) File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/tensorrt/__init__.py", line 166, in nptype bool: np.bool, File "/home/sniper/anaconda3/envs/labelme/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__ raise AttributeError(__former_attrs__[attr]) AttributeError: module 'numpy' has no attribute 'bool'. `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations 如何修复

2023-06-07 上传