Using radio waves as the network medium poses several challenges. Specifications for
wired networks are designed so that a network will work as long as it respects the
specifications. Radio waves can suffer from a number of propagation problems that may
interrupt the radio link, such as multipath interference and shadows.
Security on any network is a prime concern. On wireless networks, it is often a critical
concern because the network transmissions are available to anyone within range of the
transmitter with the appropriate antenna. On a wired network, the signals stay in the wires
and can be protected by strong physical-access control (locks on the doors of wiring
closets, and so on). On a wireless network, sniffing is much easier because the radio
transmissions are designed to be processed by any receiver within range. Furthermore,
wireless networks tend to have fuzzy boundaries. A corporate wireless network may
extend outside the building. It is quite possible that a parked car across the street could be
receiving the signals from your network. As an experiment on one of my trips to San
Francisco, I turned on my laptop to count the number of wireless networks near a major
highway outside the city. I found eight without expending any significant effort. A
significantly more motivated investigator would undoubtedly have discovered many
more networks by using a much more sensitive antenna mounted outside the steel shell of
the car.
1.2 A Network by Any Other Name...
Wireless networking is a hot industry segment. Several wireless technologies have been
targeted primarily for data transmission. Bluetooth is a standard used to build small
networks between peripherals: a form of "wireless wires," if you will. Most people in the
industry are familiar with the hype surrounding Bluetooth. I haven't met many people
who have used devices based on the Bluetooth specification.
Third-generation (3G) mobile telephony networks are also a familiar source of hype.
They promise data rates of megabits per cell, as well as the "always on" connections that
have proven to be quite valuable to DSL and cable modem customers. In spite of the
hype and press from 3G equipment vendors, the rollout of commercial 3G services has
been continually pushed back.
In contrast to Bluetooth and 3G, equipment based on the IEEE 802.11 standard has been
an astounding success. While Bluetooth and 3G may be successful in the future, 802.11 is
a success now. Apple initiated the pricing moves that caused the market for 802.11
equipment to explode in 1999. Price erosion made the equipment affordable and started
the growth that continues today.
This is a book about 802.11 networks. 802.11 goes by a variety of names, depending on
who is talking about it. Some people call 802.11 wireless Ethernet, to emphasize its
shared lineage with the traditional wired Ethernet (802.3). More recently, the Wireless
Ethernet Compatibility Alliance (WECA) has been pushing its Wi-Fi ("wireless fidelity")
certification program.
[4]
Any 802.11 vendor can have its products tested for
interoperability. Equipment that passes the test suite can use the Wi-Fi mark. For newer