matplotlib与numpy实战:绘制填充图与散点图详解
38 浏览量
更新于2024-08-28
收藏 459KB PDF 举报
在本篇文章中,我们将深入探讨如何利用Python的两大强大库——matplotlib和numpy,来创建各种常见的数据可视化图表。matplotlib作为Python中最知名的绘图工具,其API与MATLAB类似,非常适合进行交互式的数据分析和展示。
首先,我们来学习如何使用fill_between函数绘制填充图。通过`from matplotlib.pyplot import *`导入必要的模块,创建x轴上的等间距数组x,并生成两个y轴数据y1和y2,即正弦和余弦函数的值。fill_between函数允许我们指定填充的条件,如`fill_between(x, y1, y2, where=(y1 >= y2), color='red', alpha=0.25)`,这里根据y1是否大于等于y2来决定填充区域。fill_between的高级用法包括自定义范围和颜色透明度,这使得图形更具表现力。
接着,文章展示了如何创建散点图(scatter plots)。使用numpy的random.normal函数生成一组正态分布的数据,然后计算两维数据之间的角度T。scatter函数用于绘制散点图,传入x和y坐标,以及大小(s=75)和颜色映射(c=T)等参数。通过xlim和ylim设置坐标轴范围,确保视觉效果清晰。
此外,文章还会涉及其他类型的绘图,如条形图(bar plots)用于比较不同类别或组别的数值,等高线图(contour plots)用于显示数据的连续变化,以及点阵图和三维图,这些都将在后续章节详细介绍。每种图形都有其特定的应用场景和matplotlib提供的相应函数和方法。
这篇文章是一份实用的指南,旨在帮助读者掌握如何在Python中使用matplotlib和numpy进行数据可视化,无论是初学者还是进阶用户,都能从中找到所需的信息和实例。通过实践这些方法,读者可以更有效地传达复杂的数据信息,并提升数据分析和报告的质量。
2025-01-15 上传
2644 浏览量
2161 浏览量
426 浏览量
208 浏览量
3583 浏览量
1135 浏览量
183 浏览量

weixin_38684633
- 粉丝: 5
最新资源
- 下载JDK8 64位Windows版安装包
- VB实现的学生公寓宿舍管理系统详细解析
- YeetSTM32K开发板:STM32新成员特性解读
- C语言实现链表操作源码分享
- 牙医门户MERN应用开发流程与构建指南
- Qt图形界面中实现鼠标拖动与缩放功能
- Discuz!实时股票指数滚动代码插件发布
- Matlab全系列教程:轻松入门到精通
- 全国电子设计大赛G题解析:空地协同智能消防系统
- Java实现的学生管理系统详细介绍
- Python Discord猎户座机器人项目实战解析
- Win10下libssh2库1.7.0版本编译与资源分解析
- 掌握Python基础:wcl-basic-python项目示例解析
- Matlab至C语言转换:MLP编码器实战项目源码解析
- 易优CMS模板分享:全套网站解决方案
- Delphi xe中文版ASqlite3问题修复及测试