matplotlib与numpy实战:绘制填充图与散点图详解
26 浏览量
更新于2024-08-28
收藏 459KB PDF 举报
在本篇文章中,我们将深入探讨如何利用Python的两大强大库——matplotlib和numpy,来创建各种常见的数据可视化图表。matplotlib作为Python中最知名的绘图工具,其API与MATLAB类似,非常适合进行交互式的数据分析和展示。
首先,我们来学习如何使用fill_between函数绘制填充图。通过`from matplotlib.pyplot import *`导入必要的模块,创建x轴上的等间距数组x,并生成两个y轴数据y1和y2,即正弦和余弦函数的值。fill_between函数允许我们指定填充的条件,如`fill_between(x, y1, y2, where=(y1 >= y2), color='red', alpha=0.25)`,这里根据y1是否大于等于y2来决定填充区域。fill_between的高级用法包括自定义范围和颜色透明度,这使得图形更具表现力。
接着,文章展示了如何创建散点图(scatter plots)。使用numpy的random.normal函数生成一组正态分布的数据,然后计算两维数据之间的角度T。scatter函数用于绘制散点图,传入x和y坐标,以及大小(s=75)和颜色映射(c=T)等参数。通过xlim和ylim设置坐标轴范围,确保视觉效果清晰。
此外,文章还会涉及其他类型的绘图,如条形图(bar plots)用于比较不同类别或组别的数值,等高线图(contour plots)用于显示数据的连续变化,以及点阵图和三维图,这些都将在后续章节详细介绍。每种图形都有其特定的应用场景和matplotlib提供的相应函数和方法。
这篇文章是一份实用的指南,旨在帮助读者掌握如何在Python中使用matplotlib和numpy进行数据可视化,无论是初学者还是进阶用户,都能从中找到所需的信息和实例。通过实践这些方法,读者可以更有效地传达复杂的数据信息,并提升数据分析和报告的质量。
2025-01-15 上传
2652 浏览量
429 浏览量
2181 浏览量
210 浏览量
3588 浏览量
1139 浏览量
点击了解资源详情

weixin_38684633
- 粉丝: 5
最新资源
- Android PRDownloader库:支持文件下载暂停与恢复功能
- Xilinx FPGA开发实战教程(第2版)精解指南
- Aprilstore常用工具库的Java实现概述
- STM32定时开关模块DXP及完整项目资源下载指南
- 掌握IHS与PCA加权图像融合技术的Matlab实现
- JSP+MySQL+Tomcat打造简易BBS论坛及配置教程
- Volley网络通信库在Android上的实践应用
- 轻松清除或修改Windows系统登陆密码工具介绍
- Samba 4 2级免费教程:Ubuntu与Windows整合
- LeakCanary库使用演示:Android内存泄漏检测
- .Net设计要点解析与日常积累分享
- STM32 LED循环左移项目源代码与使用指南
- 中文版Windows Server服务卸载工具使用攻略
- Android应用网络状态监听与质量评估技术
- 多功能单片机电子定时器设计与实现
- Ubuntu Docker镜像整合XRDP和MATE桌面环境