克里格法在土壤水分遥感尺度转换中的应用

需积分: 48 5 下载量 114 浏览量 更新于2024-09-03 收藏 759KB PDF 举报
"克里格法的土壤水分遥感尺度转换" 遥感尺度转换是地学信息处理中的关键问题,因为不同遥感传感器获取的数据具有不同的空间分辨率,这可能导致在不同尺度间的分析和应用中出现误差。克里格法,也称为克里金插值法,是一种基于统计学的空间插值方法,常用于地理数据的不确定性建模和空间预测。在本文中,研究者探讨了如何利用克里格法来解决土壤水分遥感的尺度转换问题。 首先,文章指出传统的尺度转换模型通常依赖于光谱数据的差值计算,这种方法对于升尺度和降尺度转换并不理想。土壤含水量作为地表参数,其变化既有随机性也有结构特征,这使得直接的差值计算方法可能无法准确反映土壤水分的实际分布。 研究者以15米分辨率的ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)图像为基础,利用点克里格法进行降尺度转换,将数据从15米分辨率细化到7.5米。点克里格法考虑了每个像元中心点的土壤含水量与其他相邻像元的关联,通过估算空间变异函数来填充空缺数据,从而得到更高分辨率的土壤含水量分布。研究表明,这种降尺度转换后的分维数与实测数据的相似程度较高,表明转换结果合理。 接着,为了进行升尺度转换,即从点数据到7.5米分辨率的面数据,研究者采用了块状克里格法。这种方法将实测样点数据整合到较大的区域(块状)内,然后进行插值,以创建连续的高分辨率表面。升尺度转换的结果与实测样点的均值进行了比较,误差在1.5782至5.019之间,表明该方法在一定程度上保持了数据的精度。 此外,对比点克里格法的降尺度转换结果和块状克里格法的升尺度转换结果,发现两者之间的误差在1.2825至5.0481之间。这进一步证明了克里格法在处理空间异质性数据时的优势,因为它考虑了点与周边环境的相互关系,因此获得的土壤含水量估计比简单平均值更为精确。 该研究受到多个国家级科研项目的资助,包括国家自然科学基金项目和国家重点基础研究发展计划(973项目),表明了土壤水分遥感尺度转换在生态环境研究和管理中的重要性。作者们的研究工作不仅提供了适用于土壤水分遥感尺度转换的有效工具,也为其他地学参数的尺度转换提供了借鉴。 总结来说,克里格法在土壤水分遥感尺度转换中的应用显示了其在处理空间数据异质性和不确定性方面的强大能力,为提高遥感反演精度提供了新的思路。通过这种方法,可以更好地理解和模拟土壤水分在不同空间尺度上的变化,这对于农业管理、水资源规划以及气候变化研究等领域具有重要意义。
2020-04-21 上传
Use of NWAI-WG data   So far, NWAI-WG data have been used on a collaborative basis in publications (see the attached file). The major reasons are the data were not widely distributed. They were only used in our group and our collaborative networks. There were some cases with requests of the data made after people read Liu and Zou's (2012) paper. You have two options for using the data. Option 1: Collaboration with us. In this case, we will help you to describe the downscaling method and contribute to other parts of the paper such as comments/suggestions on the papers, if the fields are within our expertise. Option 2: Use of the data on your own. While option 1 for collaboration with us is welcome, option 2 is also highly encouraged, particularly, when the data are used for these research disciplines, rather than agricultural related. Thanks to Professor Yu who provides us with his group's web site (www.agrivy.com) as a media for distribution of the data.   Acknowledgment for option 1  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. ”   Acknowledgment for option 2  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. Dr. De Li Liu of the NSW Department of Primary Industries used NWAI-WG to downscale downscaled daily data. Also, thanks to AGRIVY (www.agrivy.com) provides us the data for this study.”