Python数据分析实战:Numpy, Pandas, Matplotlib指南

5星 · 超过95%的资源 需积分: 13 1 下载量 176 浏览量 更新于2024-07-21 收藏 13.89MB PDF 举报
"Python for Data Analysis - Wes McKinney" 本书《Python for Data Analysis》由Wes McKinney撰写,专注于利用Python进行高效的数据处理、操作、清洗和可视化。它详细介绍了Python在数据分析领域的核心库,包括Numpy、Pandas和Matplotlib。 Numpy是Python科学计算的基础包,提供了强大的多维数组对象和矩阵运算功能。它支持大量的维度数组和矩阵运算,同时也为集成Fortran、C或C++等高性能数值计算语言提供了接口。Numpy的核心是高效的数组对象ndarray,它能够处理大型数据集,且其运算速度快,内存占用少。 Pandas是基于Numpy构建的数据分析库,设计目标是提供易于使用的数据结构和数据分析工具。Pandas最重要的两个数据结构是DataFrame和Series。DataFrame是一种二维表格型数据结构,它可以存储许多不同类型的数据,并提供了大量的方法进行数据清洗、转换、合并、切片、重塑等操作。Series则是一维标记数组,类似于带标签的一维数组。Pandas还支持时间序列分析,方便对日期和时间数据进行处理。 Matplotlib是Python最广泛使用的数据可视化库,能够创建各种静态、动态、交互式的图表。它支持各种图形,如线图、散点图、直方图、饼图、3D图形等,且可以通过简单的API实现自定义的图形样式。Matplotlib通过pyplot模块提供了一个与MATLAB类似的绘图界面,使得熟悉MATLAB的用户能快速上手。 书中可能涵盖了以下几个主题: 1. 数据导入和导出:如何从CSV、Excel、SQL数据库等多种数据源加载数据,以及如何将处理后的数据保存回这些格式。 2. 数据清洗:处理缺失值、异常值、重复值,以及数据类型转换等常见的数据预处理任务。 3. 数据整合:如何使用Pandas进行数据合并、连接、拼接,处理复杂的数据关系。 4. 数据重塑和透视表:使用Pandas的pivot、melt等函数,以及groupby方法来重新组织数据,便于分析。 5. 时间序列分析:处理日期和时间数据,包括时间窗口计算、频率转换等。 6. 统计分析:基本统计量计算、描述性统计、假设检验和推断统计。 7. 数据可视化:利用Matplotlib创建高质量的图表,包括线图、柱状图、散点图、热力图等,以及如何自定义图形样式和布局。 8. 高级话题:可能涉及并行计算、性能优化、与R语言的接口,以及使用其他Python库如Scikit-Learn进行机器学习。 这本书对于想要使用Python进行数据科学和数据分析工作的读者来说,是一份宝贵的指南,它不仅介绍如何使用这些库,还提供了大量实践案例来帮助读者理解和应用这些知识。
202 浏览量
这本书主要是用 pandas 连接 SciPy 和 NumPy,用pandas做数据处理是Pycon2012上一个很热门的话题。另一个功能强大的东西是Sage,它将很多开源的软件集成到统一的 Python 接口。, Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you’ll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language., Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It’s ideal for analysts new to Python and for Python programmers new to scientific computing., Use the IPython interactive shell as your primary development environment, Learn basic and advanced NumPy (Numerical Python) features, Get started with data analysis tools in the pandas library, Use high-performance tools to load, clean, transform, merge, and reshape data, Create scatter plots and static or interactive visualizations with matplotlib, Apply the pandas groupby facility to slice, dice, and summarize datasets, Measure data by points in time, whether it’s specific instances, fixed periods, or intervals, Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples