最大似然下p-ECR与邻居加入结合的进化树搜索:拓扑优化策略
PDF格式 | 354KB |
更新于2024-08-26
| 86 浏览量 | 举报
本文主要探讨了在基于最大似然原理的进化树推断中,如何提高搜索效率并避免陷入局部最优的问题。背景部分指出,由于最大似然法的NP-hard性质,实际应用中依赖于启发式算法,其中常见的拓扑变换包括最近邻交换(NNI)、子树修剪与重接(SPR)、树二分与再连接(TBR)。然而,这些简单变换由于步骤有限,容易导致局部最优解。
为了解决这一问题,研究人员提出了一个新的方法——p-ECRNJ(p-边缘收缩与细化结合邻居加入)。p-ECRNJ的核心理念是结合p-ECR(一种更详尽的拓扑变换,具有较高的计算复杂度)和邻居加入(NJ)策略。通过优化p-ECR过程中产生的未解析节点,p-ECRNJ旨在提高搜索效率,同时避免局部最优陷阱。
p-ECR本身虽然能提供更全面的树结构探索,但由于其计算成本较高,实践中较少被采用。p-ECRNJ的引入,正是为了平衡精度和效率,使得在处理真实生物数据集时,能够找到比最佳最大似然方法更优的进化树,并能在可接受的时间内有效地改进局部拓扑结构。实验结果显示,该方法在实际应用中显示出显著的优势,表明它在进化树搜索中具有很大的潜力和实用价值。
这篇研究论文针对进化树推断中的挑战,提出了一个新颖的方法论,旨在通过集成高级拓扑变换和邻接策略,提升搜索效率,从而在进化生物学和计算机科学的交叉领域中取得了重要的进展。这不仅对生物信息学的进化树构建有直接影响,也为其他领域的全局优化问题提供了新的思考视角。
相关推荐
577 浏览量
304 浏览量
185 浏览量
190 浏览量
117 浏览量
点击了解资源详情
147 浏览量
366 浏览量

weixin_38535364
- 粉丝: 12

最新资源
- 仿牛客社区网站开发介绍:技术栈SpringBoot、Redis、Kafka
- 强化学习驱动的自适应爬虫Deep-Deep探究
- HTML5与Node.js实现的高效文件上传教程
- 半导体器件中α粒子和地磁宇宙射线诱导软错误的测量与报告
- 轻松实现二进制到十进制的转换-EasyBin2Dec转换器
- Google Chrome 70.0.3538.102稳定版发布
- Go语言斐波那契堆实现及包fibheap介绍
- p5.js动画捕获技巧:CCapture.js实战应用指南
- WPF应用程序支持表情符号渲染的Emoji.Wpf库
- Paper-Converter: 实现毕业论文格式化与导出的Java系统
- EnronSearch: 利用ElasticSearch索引和搜索Enron电邮数据集
- etrig:一个面向浏览器的简单DOM事件触发工具
- FsLibLog: F#库的日志记录抽象工具
- OpenKE-PyTorch:Python实现的知识嵌入开源框架
- 树脂CLI:快速实现标准提交格式的便捷工具
- wap-tools工具集:前后端开发与资源管理解决方案