基于多参数搜索的长距离AUV导航模型

0 下载量 107 浏览量 更新于2024-08-27 收藏 291KB PDF 举报
本文探讨了一种基于多参数搜索的AUV远程导航模型在海洋地质调查任务中的应用。作者Xingguang Peng和Kun Liu来自西北工业大学海洋科学技术学院,他们针对自主水下航行器(AUV)的远距离导航问题提出了创新的方法。传统上,AUV的导航依赖于预先构建的地图或预设路径,但该研究将动物的归巢行为视为寻找目的地时对多参数地质场的无地图探索能力。 论文的核心思想是将动物的归巢行为与多目标优化问题相联系,假设AUV的导航过程类似于动物寻找多个目标参数的过程,这些参数包含了地质场的关键特性。AUV在开始导航前会存储这些多参数,然后在行动中主动搜索这些参数,这一过程可以由应力演化算法来模拟,该算法能够模拟生物寻找最优解的行为。这种模型的创新之处在于它允许AUV进行无需预先地图的长距离导航,极大地提高了自主性与灵活性。 在介绍部分,作者指出AUV作为海洋探索和利用的重要工具,其导航能力对其性能至关重要。当前,AUV领域的研究主要面临导航难题,特别是当面对复杂的海洋环境和未知区域时。通过借鉴生物的自然导航机制,该研究有望为AUV提供更为智能和适应性强的导航策略。 研究方法包括设计一个动态的参数搜索策略,结合AUV传感器数据实时更新对地质场参数的理解,并通过迭代优化来调整AUV的航向和速度。这种方法不仅考虑了地理特征,还考虑了环境不确定性,使得AUV能够在一个不断变化的环境中进行有效导航。 实验结果展示了这种基于多参数搜索的模型在实际应用中的有效性,AUV能够实现长期、自主的导航任务,且在没有预先地图的情况下表现出良好的导航精度和稳定性。这为未来的AUV技术发展提供了新的视角,特别是对于那些需要深入未知区域进行勘探的海底作业任务具有重要意义。 这项研究为AUV的自主导航技术开辟了一条新的道路,通过模拟生物的寻路机制,不仅提升了AUV的适应性和生存能力,也推动了无人水下技术在海洋探索领域的前沿进展。

Please revise the paper:Accurate determination of bathymetric data in the shallow water zone over time and space is of increasing significance for navigation safety, monitoring of sea-level uplift, coastal areas management, and marine transportation. Satellite-derived bathymetry (SDB) is widely accepted as an effective alternative to conventional acoustics measurements over coastal areas with high spatial and temporal resolution combined with extensive repetitive coverage. Numerous empirical SDB approaches in previous works are unsuitable for precision bathymetry mapping in various scenarios, owing to the assumption of homogeneous bottom over the whole region, as well as the limitations of constructing global mapping relationships between water depth and blue-green reflectance takes no account of various confounding factors of radiance attenuation such as turbidity. To address the assumption failure of uniform bottom conditions and imperfect consideration of influence factors on the performance of the SDB model, this work proposes a bottom-type adaptive-based SDB approach (BA-SDB) to obtain accurate depth estimation over different sediments. The bottom type can be adaptively segmented by clustering based on bottom reflectance. For each sediment category, a PSO-LightGBM algorithm for depth derivation considering multiple influencing factors is driven to adaptively select the optimal influence factors and model parameters simultaneously. Water turbidity features beyond the traditional impact factors are incorporated in these regression models. Compared with log-ratio, multi-band and classical machine learning methods, the new approach produced the most accurate results with RMSE value is 0.85 m, in terms of different sediments and water depths combined with in-situ observations of airborne laser bathymetry and multi-beam echo sounder.

182 浏览量