MATLAB聚类分析实现与可视化
版权申诉
12 浏览量
更新于2024-08-04
收藏 3KB TXT 举报
"该资源是关于使用MATLAB进行聚类分析的代码示例。通过生成多模态随机数据,然后应用Gaussian混合模型(GMM)进行拟合,并使用`gmdistribution.fit`函数进行聚类。最后,展示了不同聚类的结果以及后验概率分布。"
在MATLAB中,聚类分析是一种将数据集中的观测值分组到不同类别的统计方法。在这个特定的代码中,使用了Gaussian混合模型(GMM)进行聚类,这是一种概率模型,假设数据是由多个高斯分布混合而成的。以下是代码的主要步骤和涉及的知识点:
1. **数据生成**:首先,通过`rng`函数设置随机数生成器的状态,确保每次运行代码时得到相同的结果。接着,使用`rand`和`mvnrnd`函数生成三个不同的高斯分布,分别代表三个不同的类簇。`mvnrnd`函数用于从多变量正态分布中抽取样本。
2. **数据可视化**:使用`scatter`函数绘制二维散点图,展示生成的数据点,红色圆点代表数据。
3. **GMM拟合**:通过`gmdistribution.fit`函数对数据进行GMM拟合。此函数估计数据的概率密度函数,并确定最佳的混合系数、均值和协方差矩阵。`statset`函数用于设置选项,`Display='off'`表示在拟合过程中不显示进度。
4. **等高线图和曲面图**:使用`ezcontour`和`ezsurf`函数绘制PDF(概率密度函数)的等高线图和曲面图,这有助于可视化每个高斯分量的分布情况。`[-15 15]`和`[-15 10]`定义了x和y轴的范围。
5. **聚类结果**:`cidx3`是GMM拟合后的聚类索引,根据索引将数据点分为三类。`cluster1`, `cluster2`, 和 `cluster3`分别表示这三个类簇的成员。
6. **后验概率**:`posterior`函数计算每个数据点属于每个高斯分量的概率,这可以用来进一步分析和理解聚类结果。在三维图中,用不同颜色的点表示每个类簇及其对应的后验概率。
这段代码是一个很好的学习实例,它演示了如何在MATLAB中使用GMM进行聚类分析,从数据生成到模型拟合,再到结果可视化。在实际应用中,这种方法常用于无监督学习任务,例如图像分割、文档分类或生物信息学中的基因表达数据分析。
2023-07-31 上传
2019-07-23 上传
2024-04-20 上传
2020-06-19 上传
2021-10-12 上传
2023-04-10 上传
sjx_alo
- 粉丝: 1w+
- 资源: 1235
最新资源
- 高清艺术文字图标资源,PNG和ICO格式免费下载
- mui框架HTML5应用界面组件使用示例教程
- Vue.js开发利器:chrome-vue-devtools插件解析
- 掌握ElectronBrowserJS:打造跨平台电子应用
- 前端导师教程:构建与部署社交证明页面
- Java多线程与线程安全在断点续传中的实现
- 免Root一键卸载安卓预装应用教程
- 易语言实现高级表格滚动条完美控制技巧
- 超声波测距尺的源码实现
- 数据可视化与交互:构建易用的数据界面
- 实现Discourse外聘回复自动标记的简易插件
- 链表的头插法与尾插法实现及长度计算
- Playwright与Typescript及Mocha集成:自动化UI测试实践指南
- 128x128像素线性工具图标下载集合
- 易语言安装包程序增强版:智能导入与重复库过滤
- 利用AJAX与Spotify API在Google地图中探索世界音乐排行榜